
2 Introducing Gaussian Orthogonal Ensemble and its
joint probability distribution of eigenvalues

The Gaussian Orthogonal Ensemble (goe) is the simplest ensemble of symmetric ran-
dom matrices. The simplest asymmetric random matrix 𝐻 is built from independently
Gaussian distributed random variables 𝐻𝑖 𝑗 ∼ N(0, 1) for all 𝑖 and 𝑗 . The notation
𝑥 ∼ N(𝜇, 𝜎2) means that 𝑥 is a random variable distributed like the normal distribution
with mean 𝜇 and variance 𝜎2, or that its probability density function is
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but we want to start with the (simpler) analysis of symmetric matrices (whose eigenval-
ues are real) before moving on to asymmetric ones (whose eigenvalues are complex).
To simplest way to build a symmetric matrix 𝐻𝑠 from an asymmetric one is to sum
the matrix and its transpose, or 𝐻𝑠 = 1

2 (𝐻 + 𝐻𝑇 ). How are the elements of such a
symmetric matrix distributed? The diagonal is given by (𝐻𝑠)𝑖𝑖 = 1

2 (𝐻𝑖𝑖+𝐻𝑖𝑖) = 𝐻𝑖𝑖 , so
it is also unit normal with (𝐻𝑠)𝑖𝑖 ∼ N(0, 1). The off-diagonal is given by one-half the
sum of two independent Gaussian variables. Since the sum of independent Gaussians
is another independent Gaussian with a variance given by the sum of the variances of
the two variables, we have
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or (𝐻𝑠)𝑖 𝑗 ∼ N(0, 1
2 ). What is the joint probability distribution over all the elements?

Because they are independent, it is simply the product over the individual distributions,
with
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where we have taken care to write dependence on only the off-diagonal elements in the
upper triangle of 𝐻𝑠 , since the upper and lower triangles are not independent.

This ensemble is emphatically not made of orthogonal matrices, so why does it
have this name? The answer is that it has an invariance under the action of orthogonal
matrices. Notice that in the pdf for 𝐻𝑠 , the argument of the exponential can be written
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This means that

𝜌(𝐻𝑠) =
1

(2𝜋) 1
4 𝑁 (𝑁+1)

𝑒−
1
2 Tr 𝐻2

𝑠 (5)

1



Consider a transformed matrix 𝑂𝐻𝑠𝑂
−1 for orthogonal 𝑂. Since

Tr(𝑂𝐻𝑠𝑂
−1)2 = Tr𝑂𝐻𝑠𝑂

−1𝑂𝐻𝑠𝑂
−1 = Tr𝑂𝐻𝑠𝐻𝑠𝑂

−1 = Tr 𝐻𝑠𝐻𝑠𝑂
−1𝑂 = Tr(𝐻𝑠)2

(6)

it follows that 𝜌(𝑂𝐻𝑠𝑂
−1) = 𝜌(𝐻𝑠). Therefore, any matrix is equally probable to its

rotated version.
This is an example of an invariant ensemble. Invariant ensembles can be constructed

by making the probability density function a function of only traces of powers of your
matrix:

𝜌(𝐻) = 𝑓 (Tr 𝐻,Tr 𝐻2,Tr 𝐻3, . . .) (7)

which by construction has the same invariance. They have a special property that makes
the study of their spectral properties much easier: because of their rotational invariance,
the distribution of eigenvectors factorizes from the distribution of eigenvalues; the two
are independent. We can see immediately why this is true: recall that

Tr 𝐻 =

𝑁∑︁
𝑖=1

𝑥𝑖 (8)

the sum of the eigenvalues of 𝐻. Likewise,

Tr 𝐻𝑛 =

𝑁∑︁
𝑖=1

𝑥𝑛𝑖 (9)

so any function only of traces is explicitly only a function of the eigenvalues, not
the eigenvectors. In these ensembles, any set of orthonormal eigenvectors is equally
probable.

We want to write down the joint probability distribution of eigenvalues for this
ensemble. In more abstract terms, we want a charge of variables from the elements
of 𝐻𝑠 to the eigenvalues 𝒙 = {𝑥1, . . . , 𝑥𝑁 } and eigenvectors 𝑂 = [𝒗1, . . . , 𝒗𝑁 ]. A
direct relationship between the two comes from the fact that symmetric matrices can
be diagonalized using 𝐻𝑠 = 𝑂𝑋𝑂𝑇 for 𝑋 a matrix with diagonal given by 𝒙. Then we
would have

𝜌(𝐻𝑠) 𝑑𝐻𝑠 = 𝜌(𝐻𝑠 (𝒙, 𝑂)) | det 𝐽 (𝐻𝑠 → {𝒙, 𝑂}| 𝑑𝒙 𝑑𝑂 (10)

where 𝐽 (𝐻𝑠 → {𝒙, 𝑂}) is the Jacobian of the transformation from 𝐻𝑠 to 𝒙 and 𝑂.
We already know that, in invariant ensembles, the pdf 𝜌(𝒙, 𝑂) does not depend on 𝑂

(which is not true in general). But what about the Jacobian?
Formally differentiate 𝐻𝑠:

𝛿𝐻 = (𝛿𝑂)𝑋𝑂𝑇 +𝑂 (𝛿𝑋)𝑂𝑇 +𝑂𝑋 (𝛿𝑂𝑇 ) (11)

Now we need a little identity. Formally differentiating the identity gives

0 = 𝛿𝐼 = 𝛿(𝑂𝑂𝑇 ) = (𝛿𝑂)𝑂𝑇 +𝑂 (𝛿𝑂𝑇 ) (12)
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which implies 𝛿𝑂𝑇 = −𝑂−1 (𝛿𝑂)𝑂𝑇 = −𝑂𝑇 (𝛿𝑂)𝑂𝑇 . Using this, we have

𝛿𝐻 = (𝛿𝑂)𝑋𝑂𝑇 +𝑂 (𝛿𝑋)𝑂𝑇 −𝑂𝑋𝑂𝑇 (𝛿𝑂)𝑂𝑇 (13)

We simplify this by writing 𝛿𝐻̂ = 𝑂𝑇𝛿𝐻𝑂, or

𝛿𝐻̂ = 𝑂𝑇 (𝛿𝑂)𝑋𝑂𝑇𝑂+𝑂𝑇𝑂 (𝛿𝑋)𝑂𝑇𝑂−𝑂𝑇𝑂𝑋𝑂𝑇 (𝛿𝑂)𝑂𝑇𝑂 = 𝑂𝑇 (𝛿𝑂)𝑋+𝛿𝑋−𝑋𝑂𝑇 (𝛿𝑂)
(14)

Treating the Jacobian of 𝛿𝐻̂ is equivalent to that of 𝛿𝐻 since the two are related by an
orthogonal transformation, and | det𝑂 | = 1. Further define 𝛿Ω = 𝑂𝑇𝛿𝑂, giving

𝛿𝐻̂ = (𝛿Ω)𝑋 − 𝑋 (𝛿Ω) + 𝛿𝑋 (15)

We can see that 𝛿Ω is antisymmetric, since

(𝛿Ω)𝑇 = (𝑂𝑇𝛿𝑂)𝑇 = 𝛿𝑂𝑇𝑂 = −𝑂𝑇 (𝛿𝑂)𝑂𝑇𝑂 = −𝑂𝑇𝛿𝑂 = −𝛿Ω (16)

Since 𝑋 is diagonal, this is

𝛿𝐻̂𝑖 𝑗 =

𝑁∑︁
𝑘=1

(𝛿Ω𝑖𝑘𝑋𝑘 𝑗−𝑋𝑖𝑘𝛿Ω𝑘 𝑗 )+𝛿𝑋𝑖 𝑗 = (𝛿Ω𝑖 𝑗𝑥 𝑗−𝑥𝑖𝛿Ω𝑖 𝑗 )+𝛿𝑋𝑖 𝑗 = 𝛿Ω𝑖 𝑗 (𝑥 𝑗−𝑥𝑖)+𝑑𝑥𝑖𝛿𝑖 𝑗

(17)

which gives

𝑑𝐻̂𝑖 𝑗

𝑑𝑥𝑘
= 𝛿𝑖 𝑗𝛿𝑖𝑘

𝑑𝐻̂𝑖 𝑗

𝑑Ω𝑘ℓ

= 𝛿𝑖𝑘𝛿 𝑗ℓ (𝑥 𝑗 − 𝑥𝑖) (18)

This is a bit weird to analyze, since we need the Jacobian of a matrix differentiated by a
vector and a matrix. However, it’s plausible to see that this transformation is diagonal
in 𝒙 and Ω, with 𝑁 eigenvalues 𝑥1, . . . , 𝑥𝑁 and 1

2𝑁 (𝑁 − 1) eigenvalues 𝑥 𝑗 − 𝑥𝑖 , 𝑖 < 𝑗 .
To increase plausibility, see chapter 7 of the text. Therefore the determinant of the
transformation, being the product of the eigenvalues, is

| det 𝐽 (𝐻𝑠 → {𝒙, 𝑂}) | =
𝑁∏
𝑖< 𝑗

|𝑥 𝑗 − 𝑥𝑖 | = |Δ𝑁 (𝒙) | (19)

This object is known as the Vandermonde determinant, so-called because it can also be
written

Δ𝑁 (𝒙) = det
𝑖 𝑗
(𝑥𝑖−1

𝑗 ) = det



1 · · · 1
𝑥1 · · · 𝑥𝑁
𝑥2

1 · · · 𝑥2
𝑁

... · · ·
...

𝑥𝑁−1
1 · · · 𝑥𝑁−1

𝑁


(20)
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So we have that the joint probability distribution for eigenvalues in the goe is

𝜌(𝒙) = 1
𝑍𝑁

𝑒−
1
2
∑𝑁

𝑖=1 𝑥2
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∏
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|𝑥 𝑗 − 𝑥𝑘 | (21)

for

𝑍𝑁 =
(2𝜋) 1

4 𝑁 (𝑁+1)∫
𝑑𝑂

(22)

with ∫
𝑑𝑂 =

2𝑁𝜋𝑁2/2

Γ𝑁 (𝑁/2) Γ𝑁 (𝑎) = 𝜋𝑁 (𝑁−1)/4
𝑁∏
𝑖=1

Γ(𝑎 − (𝑖 − 1)/2) (23)

If you’re curious about the volume of the orthogonal group (which will not be relevant
for our derivation of the asymptotic form of the spectral density) you can see chapter 6
of the text.

This material is in chapters 6 and 7 in the Livan text.
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