
5 The resolvent several other ways
Recall the resolvent

𝐺 (𝑧) = 1
𝑁

Tr(𝑧𝐼 − 𝐻)−1 (1)

and its relation to the spectral density:

𝜌(𝑥) = 1
𝜋

lim
𝜖→0

Im𝐺 (𝑥 − 𝑖𝜖) (2)

The resolvent is a powerful tool to find the spectral density, partially because it can
be calculated so many different ways. We saw last week a field theory approach to its
calculation. Today we will see some other ways to compute it.

The cavity method
The cavity method is an extremely general method for solving disordered systems
problems at large size. Qualitatively, it is simple: you take a large system and examine
one component of it, describing the behavior of the whole system as the behavior of the
isolated piece, the rest of the system, and the interaction between the two. Reasoning
that at large 𝑁 the behavior of the rest of the system should not be changed by removing
one piece, the average behavior of the isolated part can be self-consistently described.

Let’s see how this woks for the resolvent. We consider a large goe matrix 𝐻 and
consider the first row and column in isolation:

𝐻 =

[
𝐻11 𝑯𝑇

1
𝑯1 𝐻𝑟

]
(3)

where 𝐻𝑟 is the 𝑁 − 1 × 𝑁 − 1 rest of the matrix. Block matrices can be blockwise
inverted like[

𝑀11 𝑀12
𝑀21 𝑀22

]−1
=

[
𝑀̃11 𝑀̃12
𝑀̃21 𝑀̃22

]
(4)

where the 𝑀̃𝑖 𝑗 are functions of the 𝑀𝑖 𝑗 . We only need the relation for the upper left
block for our calculation, which is

𝑀̃−1
11 = 𝑀11 − 𝑀12𝑀

−1
22 𝑀21 (5)

which is the Schur complement formula. Writing this relationship for the upper left
1 × 1 block of the resolvent, we have

1
[(𝑧𝐼 − 𝐻)−1]11

= (𝑧 − 𝐻11) − 𝑯𝑇
1 (𝑧𝐼 − 𝐻𝑟 )−1𝑯1 (6)

Now, we take averages. For the first term we have

1
[(𝑧𝐼 − 𝐻)−1]11

=
1

[(𝑧𝐼 − 𝐻)−1]11
=

1
𝐺 (𝑧) (7)
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where here we relied on kind of approximation that happens to be valid here: the
resolvent is self-averaging and concentrates rapidly on its average, so that making the
average of the inverse is the same as the inverse of the average. We also have used the
fact that the matrix ensemble is invariant under permutation of the rows and columns,
so that

(𝑧𝐼 − 𝐻)−1
11 = (𝑧𝐼 − 𝐻)−1

𝑖𝑖
(8)

for any other index 𝑖. Then the next term gives

𝑧 − 𝐻11 = 𝑧 − 𝐻11 = 𝑧 (9)

because the matrix element 𝐻11 is a centered Gaussian. Finally, the last term is

𝑯𝑇
1 (𝑧𝐼 − 𝐻𝑟 )−1𝑯1 =

∑︁
𝑖 𝑗

𝐻1𝑖 (𝑧𝐼 − 𝐻𝑟 )−1
𝑖 𝑗
𝐻1 𝑗 =

∑︁
𝑖 𝑗

(𝑧𝐼 − 𝐻𝑟 )−1
𝑖 𝑗
𝐻1𝑖𝐻1 𝑗 (10)

=
∑︁
𝑖 𝑗

(𝑧𝐼 − 𝐻𝑟 )−1
𝑖 𝑗

1
2𝑁

(𝛿𝑖 𝑗 + 𝛿1𝑖𝛿1 𝑗 )

=
1

2𝑁

∑︁
𝑖

(𝑧𝐼 − 𝐻𝑟 )−1
𝑖𝑖

+ 1
2𝑁

(𝑧𝐼 − 𝐻𝑟 )−1
11 =

1
2
𝐺 (𝑧)

where we have used the fact that the first row and column are independent of the rest of
the matrix, and the fact that the resolvent of the 𝑁 − 1× 𝑁 − 1 submatrix is the same as
that for the whole matrix when 𝑁 is large. Putting these pieces together, we have

1
𝐺 (𝑧) = 𝑧 − 1

2
𝐺 (𝑧) (11)

which gives 𝐺 (𝑧) = 𝑧 −
√
𝑧2 − 2 and 𝜌(𝑥) = 1

𝜋

√
2 − 𝑥2, as we saw in the last lecture.

The cavity method is often the simplest method for deriving a given spectral density,
but it relies on assumptions that are sometimes not true. It is often not clear when those
assumptions fail.

The replica method
The replica method is extremely versatile, and in practice is one of the easiest ways to
derive spectral densities. It relies on an integral identity for a symmetric matrix 𝐴, or

𝐴−1
𝑖 𝑗 =

√︄
det 𝐴
(2𝜋)𝑁

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔𝑠𝑖𝑠 𝑗 (12)

This identity can be derived by differentiating a Gaussian integral by 𝐴: on one hand,

𝜕

𝜕𝐴𝑖 𝑗

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔 = −1
2

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔𝑠𝑖𝑠 𝑗 (13)
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whereas on the other hand,

𝜕

𝜕𝐴𝑖 𝑗

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔 =
𝜕

𝜕𝐴𝑖 𝑗

√︂
(2𝜋)𝑁
det 𝐴

= −1
2

√︄
(2𝜋)𝑁
(det 𝐴)3

𝜕

𝜕𝐴𝑖 𝑗

det 𝐴 (14)

= −1
2

√︄
(2𝜋)𝑁
(det 𝐴)3 det 𝐴𝐴−1

𝑖 𝑗 = −1
2

√︄
(2𝜋)𝑁
(det 𝐴) 𝐴

−1
𝑖 𝑗

Equating (13) and (14) and rearranging gives (12). The first factor is annoying, but we
can cancel it with another integral:∫

𝑑𝒔 𝑒−
1
2 𝒔

𝑇 𝐴𝒔 =

√︂
(2𝜋)𝑁
det 𝐴

(15)

so that

𝐴−1
𝑖 𝑗 =

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔𝑠𝑖𝑠 𝑗∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔
(16)

We can therefore write

𝐺 (𝑧) = 1
𝑁

Tr(𝑧𝐼 − 𝐻)−1 =
1
𝑁

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 (𝑧𝐼−𝐻 )𝒔 ∥𝒔∥2∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 (𝑧𝐼−𝐻 )𝒔
(17)

where the denominator is necessary to cancel the leading factor of 𝜋s and det 𝐴. Now,
taking the average is a problem: we can average the numerator because it it is the linear
exponential of a Gaussian random variable, but the denominator poses a challenge. We
treat it with replicas, and the trivial identity

lim
𝑛→0

𝑥𝑛−1 =
1
𝑥

(18)

If we call the integration variable in the numerator 𝒔1, we can write

𝐺 (𝑧) = 1
𝑁

lim
𝑛→0

∫
𝑑𝒔1 𝑒

− 1
2 𝒔

𝑇
1 (𝑧𝐼−𝐻 )𝒔1 ∥𝒔1∥2

(∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 (𝑧𝐼−𝐻 )𝒔
)𝑛−1

(19)

=
1
𝑁

lim
𝑛→0

∫ (
𝑛∏

𝑎=1
𝑑𝒔𝑎

)
∥𝒔1∥2𝑒−

1
2
∑𝑛

𝑎=1 𝒔
𝑇
𝑎 (𝑧𝐼−𝐻 )𝒔𝑎

where the 𝑛−1 replicas from the denominator have integration variables 𝒔2 through 𝒔𝑛.
The advantage of this transformation is that it reduces dependence on 𝐻 to linear in

an exponential. For Gaussian 𝐻 we know how to average this, since for Gaussians we
have

𝑒
∑

𝑖 𝑗 𝐴𝑖 𝑗𝐻𝑖 𝑗 = 𝑒
1
2
∑

𝑖 𝑗𝑘𝑙 𝐴𝑖 𝑗𝐻𝑖 𝑗𝐻𝑘𝑙𝐴𝑘𝑙 (20)
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For us this gives

𝑒
− 1

2
∑𝑛

𝑎=1
∑𝑁

𝑖 𝑗=1 𝑠𝑎𝑖𝑠𝑎 𝑗𝐻𝑖 𝑗 = 𝑒
1
8
∑𝑛

𝑎=1
∑𝑁

𝑖 𝑗=1 𝑠𝑎𝑖𝑠𝑎 𝑗

∑𝑛
𝑏=1

∑𝑁
𝑘𝑙=1 𝑠𝑏𝑘𝑠𝑏𝑙𝐻𝑖 𝑗𝐻𝑘𝑙 (21)

= 𝑒
1
8
∑𝑛

𝑎=1
∑𝑁

𝑖 𝑗=1 𝑠𝑎𝑖𝑠𝑎 𝑗

∑𝑛
𝑏=1

∑𝑁
𝑘𝑙=1 𝑠𝑏𝑘𝑠𝑏𝑙

1
2𝑁 (𝛿𝑖𝑘 𝛿 𝑗𝑙+𝛿𝑖𝑙 𝛿 𝑗𝑘 )

= 𝑒
𝑁
8

∑𝑛
𝑎,𝑏=1 (

𝒔𝑎 ·𝒔𝑏
𝑁

)2

and therefore

𝐺 (𝑧) = lim
𝑛→0

∫ (
𝑛∏

𝑎=1
𝑑𝒔𝑎

)
𝒔1 · 𝒔1
𝑁

𝑒−
𝑁
2 𝑧

∑𝑛
𝑎=1

𝒔𝑎 ·𝒔𝑎
𝑁

+ 𝑁
8

∑𝑛
𝑎,𝑏=1 (

𝒔𝑎 ·𝒔𝑏
𝑁

)2
(22)

Averaging over 𝐻 has coupled the previously independent replicas together. Now, we
notice that the resolvent depends only on the scalar products 𝒔𝑎 · 𝒔𝑏. We therefore look
to replace them with an order parameter

𝑄𝑎𝑏 =
𝒔𝑎 · 𝒔𝑏
𝑁

(23)

which is called the overlap matrix. We do this by inserting a 𝛿-function∫ ∏
𝑎𝑏

𝑑𝑄𝑎𝑏 𝛿
( 1

2 (𝑁𝑄𝑎𝑏 − 𝒔𝑎 · 𝒔𝑏)
)
=

∫
𝑑𝑄 𝑑𝑄̃ 𝑒

∑
𝑎𝑏

1
2 𝑄̃𝑎𝑏 (𝑁𝑄𝑎𝑏−𝒔𝑎 ·𝒔𝑏 ) (24)

which gives us

𝐺 (𝑧) = lim
𝑛→0

∫
𝑑𝑄 𝑑𝑄̃ 𝑄11𝑒

− 𝑁
2 𝑧

∑𝑛
𝑎=1 𝑄𝑎𝑎+ 𝑁

8
∑𝑛

𝑎,𝑏=1 𝑄
2
𝑎𝑏

+ 𝑁
2

∑
𝑎𝑏 𝑄̃𝑎𝑏𝑄𝑎𝑏

∫ (
𝑛∏

𝑎=1
𝑑𝒔𝑎

)
𝑒−

1
2
∑

𝑎𝑏 𝑄̃𝑎𝑏𝒔𝑎 ·𝒔𝑏

= lim
𝑛→0

∫
𝑑𝑄 𝑑𝑄̃ 𝑄11𝑒

− 𝑁
2 𝑧

∑𝑛
𝑎=1 𝑄𝑎𝑎+ 𝑁

8
∑𝑛

𝑎,𝑏=1 𝑄
2
𝑎𝑏

+ 𝑁
2

∑
𝑎𝑏 𝑄̃𝑎𝑏𝑄𝑎𝑏

(
(2𝜋)𝑛

det 𝑄̃

) 𝑁
2

= lim
𝑛→0

(2𝜋) 𝑛𝑁
2

∫
𝑑𝑄 𝑑𝑄̃ 𝑄11𝑒

− 𝑁
2 𝑧

∑𝑛
𝑎=1 𝑄𝑎𝑎+ 𝑁

8
∑𝑛

𝑎,𝑏=1 𝑄
2
𝑎𝑏

+ 𝑁
2

∑
𝑎𝑏 𝑄̃𝑎𝑏𝑄𝑎𝑏− 𝑁

2 log det 𝑄̃

New we can see clearly where this is going: the integral now only involves the order
parameter matrices 𝑄 and 𝑄̃ with dependence on an exponential raised to the power 𝑁 .
Therefore, we can used the saddle-point method. First we consider the integral in 𝑄̃.
The extremal condition is

𝜕S
𝜕𝑄̃𝑎𝑏

=
1
2
𝑄𝑎𝑏 −

1
2

1
det 𝑄̃

𝜕

𝜕𝑄̃𝑎𝑏

det 𝑄̃ =
1
2
𝑄𝑎𝑏 −

1
2
𝑄̃−1

𝑎𝑏 (25)

which implies 𝑄̃ = 𝑄−1. This gives

𝐺 (𝑧) = lim
𝑛→0

∫
𝑑𝑄 𝑄11𝑒

− 𝑁
2 𝑧

∑𝑛
𝑎=1 𝑄𝑎𝑎+ 𝑁

8
∑𝑛

𝑎,𝑏=1 𝑄
2
𝑎𝑏

+ 𝑁
2 log det𝑄+ 𝑁𝑛

2 (1+log(2𝜋 ) )

(26)
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This is clearly set up for us to use a saddle-point approximation. For the matrix 𝑄, we
have

0 =
𝜕S

𝜕𝑄𝑎𝑏

= −1
2
𝑧𝛿𝑎𝑏 +

1
4
𝑄𝑎𝑏 +

1
2
𝑄−1

𝑎𝑏 (27)

Multiplying both sides by 2𝑄 gives the matrix equation

0 =
1
2
𝑄2 − 𝑧𝑄 + 𝐼 (28)

which is really 𝑛2 equations. How can we hope to make sense of this mess?
This requires making an ansatz for the structure of 𝑄. Experience tells us that,

because our initial problem was a quadratic Hamiltonian, 𝑄 will have a property called
replica symmetry, meaning that its structure is 𝑄𝑎𝑏 = 𝑞𝑑𝛿𝑎𝑏 + 𝑞0. This is a matrix
with one constant 𝑞𝑑 + 𝑞0 on the diagonal and another constant 𝑞0 on all off-diagonals.
Inserting this into our matrix equation, we have

0 =
1
2

∑︁
𝑐

𝑄𝑎𝑐𝑄𝑐𝑏 − 𝑧𝑄𝑎𝑏 + 𝛿𝑎𝑏 (29)

=
1
2

∑︁
𝑐

(𝑞𝑑𝛿𝑎𝑐 + 𝑞0) (𝑞𝑑𝛿𝑐𝑏 + 𝑞0) − 𝑧(𝑞𝑑𝛿𝑎𝑏 + 𝑞0) + 𝛿𝑎𝑏

=
1
2
(𝑞2

𝑑𝛿𝑎𝑏 + 2𝑞𝑑𝑞0 + 𝑛𝑞2
0) − 𝑧(𝑞𝑑𝛿𝑎𝑏 + 𝑞0) + 𝛿𝑎𝑏

=

[
1
2
𝑞2
𝑑 − 𝑧𝑞𝑑 + 1

]
𝛿𝑎𝑏 +

[
𝑞𝑑𝑞0 +

1
2
𝑛𝑞2

0 − 𝑧𝑞0

]
This gives us two equations, one for the diagonal and one for the off-diagonal. The off
diagonal equation is solved by 𝑞0 = 0, whereas the diagonal one is a quadratic equation
for 𝑞𝑑 with solutions

𝑞𝑑 = 𝑧 ±
√︁
𝑧2 − 2 (30)

Since 𝑄𝑎𝑏 = 𝑞𝑑𝛿𝑎𝑏 with zero off-diagonal, we have
𝑛∑︁

𝑎=1
𝑄𝑎𝑎 = 𝑛𝑞𝑑

𝑛∑︁
𝑎𝑏=1

𝑄2
𝑎𝑏 = 𝑛𝑞2

𝑑 log det𝑄 = 𝑛 log 𝑞𝑑 𝑄11 = 𝑞𝑑 (31)

and therefore we have

𝐺 (𝑧) = lim
𝑛→0

𝑞𝑑𝑒
𝑁𝑛[− 1

2 𝑧𝑞𝑑+
1
8 𝑞

2
𝑑
+ 1

2 log 𝑞𝑑+ 1
2 (1+log(2𝜋 ) ) ] (32)

In the limit 𝑛 → 0, the whole exponential factor goes to one regardless of the value of
𝑞𝑑 . We therefore have

𝐺 (𝑧) = 𝑞𝑑 = 𝑧 ±
√︁
𝑧2 − 2 (33)

and the semicircle distribution as before.
The replica method is extremely powerful for treating mean-field cases where sub-

leading corrections in 𝑁 are not desired or necessary. It can be difficult to successfully
use in situations beyond the spectral density, e.g., for two-point functions, because it
can require application of replica symmetry breaking.
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