
5 The resolvent several other ways, continued
Recall the resolvent

𝐺 (𝑧) = 1
𝑁

Tr(𝑧𝐼 − 𝐻)−1 (1)

and its relation to the spectral density:

𝜌(𝑥) = 1
𝜋

lim
𝜖→0

Im𝐺 (𝑥 − 𝑖𝜖) (2)

The resolvent is a powerful tool to find the spectral density, partially because it can
be calculated so many different ways. We saw last week a field theory approach to its
calculation. Today we will see some other ways to compute it.

Supersymmetry
The supersymmetric method starts again from the identity

𝐴−1
𝑖 𝑗 =

√︄
det 𝐴
(2𝜋)𝑁

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔𝑠𝑖𝑠 𝑗 (3)

Again, we need to eliminate the extraneous determinant in front. Supersymmetry does
this by introducing extra fields that cancel it. Consider the following counting problem:
each time you do a Gaussian integral∫

𝑑𝒔 𝑒−
1
2 𝒔

𝑇 𝐴𝒔 =

√︂
(2𝜋)𝑁
det 𝐴

(4)

you get a factor of det 𝐴 to the − 1
2 . On the other hand each time you do a Gaussian

integral of Grassmann variables∫
𝑑𝜼̄ 𝑑𝜼 𝑒−𝜼̄

𝑇 𝐴𝜼 = det 𝐴 (5)

you get a factor of det 𝐴 to the +1. Therefore, to have the correct number of det 𝐴 we
write two real-valued Gaussian integrals and one Grassmann Gaussian integral, or

𝐴−1
𝑖 𝑗 =

∫
𝑑𝒔

𝑑 𝒔̂

(2𝜋)𝑁 𝑑𝜼̄ 𝑑𝜼 𝑒−
1
2 𝒔

𝑇 𝐴𝒔− 1
2 𝒔̂

𝑇 𝐴𝒔̂−𝜼̄𝑇 𝐴𝜼𝑠𝑖𝑠 𝑗 (6)

=

∫
𝑑𝒔

𝑑 𝒔̂

(2𝜋)𝑁 𝑑𝜼̄ 𝑑𝜼 𝑒−
1
2 𝒔

𝑇 𝐴𝒔− 1
2 𝒔̂

𝑇 𝐴𝒔̂−𝜼̄𝑇 𝐴𝜼 1
2
(𝑠𝑖𝑠 𝑗 + 𝑠𝑖𝑠 𝑗 )

where we have used the symmetry of the integral exchanging 𝒔 and 𝒔̂. Why is this called
supersymmetric? If we defined a superfield indexed by Grassmann indices 𝜃 and 𝜃 by

𝝓(𝜃) = 1
√

2
(𝒔 + 𝑖 𝒔̂) + 𝜃𝜼 + 𝜼̄𝜃 + 𝜃𝜃

1
√

2
(𝒔 − 𝑖 𝒔̂) (7)
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and define the measure

𝑑𝝓 = 𝑑𝒔
𝑑 𝒔̂

(2𝜋)𝑁 𝑑𝜼̄ 𝑑𝜼 (8)

Then we can write 𝐴−1
𝑖 𝑗

as

𝐴−1
𝑖 𝑗 =

∫
𝑑𝝓 𝑒−

1
2
∫
𝑑𝜃 𝑑𝜃 𝝓 (𝜃 )𝑇 𝐴𝝓 (𝜃 ) 1

2

∫
𝑑𝜃1 𝑑𝜃1 𝑑𝜃2 𝑑𝜃2 (𝜃1𝜃1+𝜃2𝜃2)𝜙𝑖 (1)𝜙 𝑗 (2) (9)

This integral has two pieces: the exponential piece, which can be written in an explicitly
supersymmetric way (meaning that there is no explicit dependence on the indices 𝜃 and
𝜃), and the prefactor

1
2

∫
𝑑𝜃1 𝑑𝜃1 𝑑𝜃2 𝑑𝜃2 (𝜃1𝜃1 + 𝜃2𝜃2)𝜙𝑖 (1)𝑇𝜙 𝑗 (2) =

1
2
(𝑠𝑖𝑠 𝑗 + 𝑠𝑖𝑠 𝑗 ) (10)

which is not supersymmetric. However, because the exponential is supersymmetric,
our saddle point value of our order parameter will be supersymmetric.

Replacing 𝐴 with 𝑧𝐼 − 𝐻 (and writing 𝑑1 = 𝑑𝜃1 𝑑𝜃1, etc) gives

𝐺 (𝑧) =
∫

𝑑𝝓 𝑒−
1
2
∫
𝑑1𝝓 (1)𝑇 (𝑧𝐼−𝐻 )𝝓 (1) 1

2

∫
𝑑1 𝑑2 (𝜃1𝜃1 + 𝜃2𝜃2)

𝝓(1)𝑇𝝓(2)
𝑁

(11)

Averaging over 𝐻 gives

𝐺 (𝑧) =
∫

𝑑𝝓 𝑒−
1
2 𝑧

∫
𝑑1𝝓 (1)𝑇𝝓 (1)+ 1

8𝑁
∫
𝑑1 𝑑2 [𝝓 (1)𝑇𝝓 (2) ]2 1

2

∫
𝑑1 𝑑2 (𝜃1𝜃1+𝜃2𝜃2)

𝝓(1)𝑇𝝓(2)
𝑁

(12)

Now we introduce an order parameter Q(1, 2) = 1
𝑁
𝝓(1)𝑇𝝓(2). This gives

𝐺 (𝑧) =
∫

𝑑𝝓 𝑑Q 𝑒−
𝑁
2 𝑧

∫
𝑑1Q(1,1)+ 𝑁

8
∫
𝑑1 𝑑2Q(1,2)2

𝛿( 1
2 (𝑁Q(1, 2) − 𝝓(1)𝑇𝝓(2)))

× 1
2

∫
𝑑1 𝑑2 (𝜃1𝜃1 + 𝜃2𝜃2)Q(1, 2)

=

∫
𝑑Q 𝑒−

𝑁
2 𝑧

∫
𝑑1Q(1,1)+ 𝑁

8
∫
𝑑1 𝑑2Q(1,2)2

∫
𝑑Q̃ 𝑒

𝑁
2
∫
𝑑1 𝑑2 Q̃(1,2)Q(1,2)

∫
𝑑𝝓 𝑒−

1
2
∫
𝑑1 𝑑2𝝓 (1)𝑇 Q̃(1,2)𝜙 (2)

× 1
2

∫
𝑑1 𝑑2 (𝜃1𝜃1 + 𝜃2𝜃2)Q(1, 2)

=

∫
𝑑Q 𝑒−

𝑁
2 𝑧

∫
𝑑1Q(1,1)+ 𝑁

8
∫
𝑑1 𝑑2Q(1,2)2

∫
𝑑Q̃ 𝑒

𝑁
2
∫
𝑑1 𝑑2 Q̃(1,2)Q(1,2)− 𝑁

2 sdet Q̃

× 1
2

∫
𝑑1 𝑑2 (𝜃1𝜃1 + 𝜃2𝜃2)Q(1, 2)

where we have exponentiated the 𝛿 function and integrated away the 𝝓. Treating the
integral in Q̃ with a saddle point gives

0 =
𝜕S

𝜕Q̃(1, 2)
=

1
2
Q(1, 2) + 1

2
Q̃−1 (1, 2) (13)

2



which results in Q̃(1, 2) = Q−1 (1, 2). Finally, the whole thing can be written

𝐺 (𝑧) =
∫

𝑑Q 𝑒−
𝑁
2 𝑧

∫
𝑑1Q(1,1)+ 𝑁

8
∫
𝑑1 𝑑2Q(1,2)2+ 𝑁

2 sdetQ 1
2

∫
𝑑1 𝑑2 (𝜃1𝜃1 + 𝜃2𝜃2)Q(1, 2)

where we have used the fact that 𝛿(1, 1) = 0 to eliminate the term coming from Q̃Q.
Now we can write the saddle-point condition for Q, with

0 =
𝜕S

𝜕Q(1, 2) = −1
2
𝑧𝛿(1, 2) + 1

4
𝑄(1, 2) + 1

2
Q−1 (1, 2) (14)

Convolving everything by 2Q gives

0 =
1
2

∫
𝑑3Q(1, 3)Q(3, 2) − 𝑧Q(1, 2) + 𝛿(1, 2) (15)

A generic supersymmetric operator has the form Q(1, 2) = 𝑞𝑑𝛿(1, 2) + 𝑞0. Inserting
this and expanding everything, we find

0 =
1
2

∫
𝑑3 (𝑞𝑑𝛿(1, 3) + 𝑞0) (𝑞𝑑𝛿(3, 2) + 𝑞0) − 𝑧(𝑞𝑑𝛿(1, 2) + 𝑞0) + 𝛿(1, 2)

=
1
2
(𝑞2

𝑑𝛿(1, 2) + 2𝑞𝑑𝑞0) − 𝑧(𝑞𝑑𝛿(1, 2) + 𝑞0) + 𝛿(1, 2)

=

(
1
2
𝑞2
𝑑 − 𝑧𝑞𝑑 + 1

)
𝛿(1, 2) + (𝑞𝑑𝑞0 − 𝑧𝑞0)

Each term has to independently give zero. Notice that these give the exact same
conditions on 𝑞𝑑 and 𝑞0 as the replica calculation when 𝑛 = 0. Solving, we again find
𝑞0 = 0, 𝑞𝑑 = 𝑧 ±

√
𝑧2 − 2. Then, to evaluate 𝐺, we notice that for supersymmetric Q,

sTrQ =

∫
𝑑1Q(1, 1) = 0 sdetQ = 1 (16)∫

𝑑1 𝑑2Q(1, 2)2 =

∫
𝑑1 𝑑2 (𝑞2

0 + 𝑞𝑑𝑞0𝛿(1, 2)) =
∫

𝑑1 𝑞𝑑𝑞0𝛿(1, 1) = 0

(17)

where in the last we used that 𝛿(1, 2)2 = 0 and 𝛿(1, 1) = 0. Therefore, the entire
argument of the exponential is identically zero at the saddle point value of Q! This is in
fact typical of supersymmetric integrals. As for the replicas, all our value comes from
the prefactor, which gives

𝐺 (𝑧) = 1
2

∫
𝑑1 𝑑2 (𝜃1𝜃1 + 𝜃2𝜃2)Q(1, 2) (18)

=
1
2

∫
𝑑1 𝑑2 (𝜃1𝜃1 + 𝜃2𝜃2) (𝑞0 + 𝑞𝑑𝛿(1, 2))

=
1
2

∫
𝑑1 (2𝜃1𝜃1𝑞𝑑 + 𝑞0) = 𝑞𝑑 = 𝑧 ±

√︁
𝑧2 − 2

Once again we find the classic resolvent for the semicircle!
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In the saddle-point approach, the supersymmetric technique is nearly identical to
that of replicas. However, the great strength of supersymmetry is that it comes with a
toolkit for working on systems beyond mean-field: we could have treated the integral
over 𝝓 as a regular supersymmetric field theory and make a perturbative expansion.
Because of this, supersymmetry provides a toolkit for working at finite 𝑁 or for sparse
or otherwise structured systems.
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