
5 The resolvent several other ways, continued continued
Recall the resolvent

𝐺 (𝑧) = 1
𝑁

Tr(𝑧𝐼 − 𝐻)−1 (1)

and its relation to the spectral density:

𝜌(𝑥) = 1
𝜋

lim
𝜖→0

Im𝐺 (𝑥 − 𝑖𝜖) (2)

The resolvent is a powerful tool to find the spectral density, partially because it can
be calculated so many different ways. We saw last week a field theory approach to its
calculation. Today we will see some other ways to compute it.

Dynamics
A final approach again starts from the observation that

𝐴−1
𝑖 𝑗 =

√︄
det 𝐴
(2𝜋)𝑁

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔𝑠𝑖𝑠 𝑗 =

∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔𝑠𝑖𝑠 𝑗∫
𝑑𝒔 𝑒−

1
2 𝒔

𝑇 𝐴𝒔
= ⟨𝑠𝑖𝑠 𝑗⟩ (3)

is simply the average of 𝑠𝑖𝑠 𝑗 over a Boltzmann distribution with energy 𝐸 (𝒔) = 1
2 𝒔

𝑇 𝐴𝒔
and temperature𝑇 = 1 (the average over this distribution is written with angle brackets).
We know that the Boltzmann distribution

𝜌(𝒔) = 1
𝑍
𝑒−𝛽𝐸 (𝒔) (4)

is the stationary distribution of Langevin dynamics

¤𝒔(𝑡) = −∇𝐸 (𝒔(𝑡)) + 𝝃 (𝑡) (5)

where 𝝃 is centered Gaussian noise with variance ⟨𝜉𝑖 (𝑡)𝜉 𝑗 (𝑠)⟩ = 2𝑇𝛿𝑖 𝑗𝛿(𝑡 − 𝑠) for
𝑇 = 𝛽−1. So, we can understand the trace of the inverse matrix Tr 𝐴−1 by averaging the
behavior of ∥𝒔(𝑡)∥2 under the Langevin dynamics above at large times. Our dynamics
should have 𝑇 = 1 and 𝐴 = 𝑧𝐼 − 𝐻, so inserting 𝐸 defined above gives

¤𝒔(𝑡) = −𝑧𝒔(𝑡) + 𝐻𝒔(𝑡) + 𝝃 (𝑡) (6)

This is the equation of 𝑁 particles moving in a bath with an attraction to the origin and
pairwise interactions mediated by the matrix 𝐻.

In fact, the resolvent is also encoded in other pieces of the theory. Consider the
response function, defined by adding an external field 𝒉 to the equation of motion and
taking the average variation of the trajectory with respect to the external field, or

𝑅(𝑡, 𝑠) = 1
𝑁

〈
𝑁∑︁
𝑖=1

𝛿𝑠𝑖 (𝑡)
𝛿ℎ𝑖 (𝑠)

〉 ����
𝒉=0

(7)
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We can write a self-consistent formula for the response by taking the variation of the
equation of motion with respect to 𝒉. Since 𝝃 is independent of 𝒉, this gives

𝜕

𝜕𝑡

𝛿𝑠𝑖 (𝑡)
𝛿ℎ 𝑗 (𝑠)

= −
∑︁
𝑘

(𝑧𝛿𝑖𝑘−𝐻𝑖𝑘)
𝛿𝑠𝑘 (𝑡)
𝛿ℎ 𝑗 (𝑠)

+ 𝛿ℎ𝑖 (𝑡)
𝛿ℎ 𝑗 (𝑠)

= −
∑︁
𝑘

(𝑧𝛿𝑖𝑘−𝐻𝑖𝑘)
𝛿𝑠𝑘 (𝑡)
𝛿ℎ 𝑗 (𝑠)

+𝛿𝑖 𝑗𝛿(𝑡−𝑠)

(8)

we briefly define a matrix response function 𝑀𝑖 𝑗 (𝑡, 𝑠) = ⟨ 𝛿𝑠𝑖 (𝑡 )
𝛿ℎ 𝑗 (𝑠) ⟩, where 𝑅(𝑡, 𝑠) =

1
𝑁

Tr 𝑀 (𝑡, 𝑠). Then, taking the average over noise of the previous equation, we have
the matrix equation

𝜕

𝜕𝑡
𝑀 (𝑡, 𝑠) = −(𝑧𝐼 − 𝐻)𝑀 (𝑡, 𝑠) + 𝐼𝛿(𝑡 − 𝑠) (9)

In the stationary state, the response function is time translation invariant, meaning that
it is only a function of the difference between the perturbation and measurement, or
𝑀 (𝑡 + 𝜏, 𝑡) = 𝑀 (𝜏). Substituting this and making the Fourier transform of the result,
we find

𝑖𝜔𝑀̂ (𝜔) = −(𝑧𝐼 − 𝐻)𝑀̂ (𝜔) + 𝐼 (10)

which is solved to give

𝑀̂ (𝜔) = ((𝑧 + 𝑖𝜔)𝐼 − 𝐻)−1 (11)

which implies directly that

𝐺 (𝑧) = 1
𝑁

Tr 𝑀̂ (0) = 𝑅̂(0) (12)

So, the resolvent can be found from the zero-frequency value of the Fourier transform
of the response function of our Langevin dynamics! We will see that this is an easier
way to extract 𝐺 than from the expectation of ∥𝒔∥2.

To solve this, any existing technique for studying Langevin dynamics would suf-
fice. Here, we use techniques from dynamical mean field theory (dmft). Define the
generating function

𝑍 =

∫
𝒔 (0)=𝒔0

D𝒔 𝛿(𝝃 (𝑡) − ¤𝒔(𝑡) − 𝑧𝒔(𝑡) + 𝐻𝒔(𝑡)) (13)

=

∫
D𝒔D 𝒔̂ 𝑒

∫
𝑑𝑡 𝒔̂ (𝑡 )𝑇 [𝝃 (𝑡 )−¤𝒔 (𝑡 )−𝑧𝒔 (𝑡 )+𝐻𝒔 (𝑡 ) ] (14)

where we have used a functional Lagrange multiplier.1 Note that we can relate 𝑅 to the
1Our generating function has a functional 𝛿 function, but no Jacobian. We are correct in neglecting the

functional Jacobian so long as we take the Itô convention for our path integral, which guarantees that the
Jacobian is always one. This is because in that convention, when considering the matrix with rows of 𝑡 and
columns of 𝑡 ′, the matrix is only nonzero on the diagonal and on one of the neighboring diagonals, i.e., it is
bidiagonal. Here the distinction between conventions is meaningless anyway.
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average value of 𝒔(𝑡) · 𝒔(𝑠). This is because

𝑅(𝑡, 𝑠) =
〈

1
𝑁

𝑁∑︁
𝑖=1

𝛿𝑠𝑖 (𝑡)
𝛿ℎ𝑖 (𝑠)

〉 ����
𝒉=0

(15)

=

〈
1
𝑁

𝑁∑︁
𝑖=1

𝛿

𝛿ℎ𝑖 (𝑠)

∫
D𝒔D 𝒔̂ 𝑠𝑖 (𝑡)𝑒

∫
𝑑𝑡 𝒔̂ (𝑡 )𝑇 [𝝃 (𝑡 )−¤𝒔 (𝑡 )−𝑧𝒔 (𝑡 )+𝐻𝒔 (𝑡 )+𝒉 (𝑡 ) ]

〉 ����
𝒉=0

=

〈
1
𝑁

𝑁∑︁
𝑖=1

∫
D𝒔D 𝒔̂ 𝑠𝑖 (𝑡)𝑠𝑖 (𝑠)𝑒

∫
𝑑𝑡 𝒔̂ (𝑡 )𝑇 [𝝃 (𝑡 )−¤𝒔 (𝑡 )−𝑧𝒔 (𝑡 )+𝐻𝒔 (𝑡 )+𝒉 (𝑡 ) ]

〉 ����
𝒉=0

=
1
𝑁
⟨𝒔(𝑡) · 𝒔̂(𝑠)⟩

First we average over the noise 𝝃, which gives

⟨𝑍⟩ =
∫

D𝒔D 𝒔̂ 𝑒
∫
𝑑𝑡 𝒔̂ (𝑡 )𝑇 [−¤𝒔 (𝑡 )−𝑧𝒔 (𝑡 )+𝐻𝒔 (𝑡 ) ]+ 1

2
∫
𝑑𝑡 𝑑𝑠 𝒔̂ (𝑡 )𝑇 ⟨𝝃 (𝑡 )𝝃 (𝑠)𝑇 ⟩ 𝒔̂ (𝑠) (16)

=

∫
D𝒔D 𝒔̂ 𝑒

∫
𝑑𝑡 𝒔̂ (𝑡 )𝑇 [−¤𝒔 (𝑡 )−𝑧𝒔 (𝑡 )+𝐻𝒔 (𝑡 ) ]+

∫
𝑑𝑡 𝑑𝑠 𝒔̂ (𝑡 )𝑇 𝛿 (𝑡−𝑠) 𝐼 𝒔̂ (𝑠)

=

∫
D𝒔D 𝒔̂ 𝑒

∫
𝑑𝑡 𝒔̂ (𝑡 )𝑇 [ 𝒔̂ (𝑡 )−¤𝒔 (𝑡 )−𝑧𝒔 (𝑡 )+𝐻𝒔 (𝑡 ) ]

Now we average over the matrix 𝐻, which gives

𝑒
∫
𝑑𝑡 𝒔̂ (𝑡 )𝑇𝐻𝒔 (𝑡 ) = 𝑒

1
2
∑

𝑖 𝑗𝑘𝑙

∫
𝑑𝑡 𝑠𝑖 (𝑡 )𝑠 𝑗 (𝑡 )

∫
𝑑𝑠 𝑠𝑘 (𝑠)𝑠𝑙 (𝑠)𝐻𝑖 𝑗𝐻𝑘𝑙 (17)

= 𝑒
1

4𝑁
∑

𝑖 𝑗𝑘𝑙

∫
𝑑𝑡 𝑠𝑖 (𝑡 )𝑠 𝑗 (𝑡 )

∫
𝑑𝑠 𝑠𝑘 (𝑠)𝑠𝑙 (𝑠) (𝛿𝑖𝑘 𝛿𝑘𝑙+𝛿𝑖𝑙 𝛿 𝑗𝑘 )

= 𝑒
𝑁
4
∫
𝑑𝑡 𝑑𝑠 ( 𝒔 (𝑡 ) ·𝒔 (𝑠)

𝑁

𝒔̂ (𝑡 ) ·𝒔̂ (𝑠)
𝑁

+ 𝒔 (𝑡 ) ·𝒔̂ (𝑠)
𝑁

𝒔̂ (𝑡 ) ·𝒔 (𝑠)
𝑁

)

Now we see that once again, everything in our integrand is a function only of scalar
products

𝐶 (𝑡, 𝑠) = 1
𝑁
𝒔(𝑡) · 𝒔(𝑠) 𝑅(𝑡, 𝑠) = 1

𝑁
𝒔(𝑡) · 𝒔̂(𝑠) 𝐷 (𝑡, 𝑠) = 1

𝑁
𝒔̂(𝑡) · 𝒔̂(𝑠) (18)

which we must insert with more functional 𝛿 functions:

⟨𝑍⟩ =
∫

D𝐶D𝑅D𝐷 𝑒𝑁
∫
𝑑𝑡 𝑑𝑠 [𝐷 (𝑡 ,𝑠)−(𝑧+𝜕𝑡 ) )𝑅 (𝑡 ,𝑠) ] 𝛿 (𝑡−𝑠)+ 𝑁

4
∫
𝑑𝑡 𝑑𝑠 (𝐶 (𝑡 ,𝑠)𝐷 (𝑡 ,𝑠)+𝑅 (𝑡 ,𝑠)𝑅 (𝑠,𝑡 ) )

×
∫

D𝒔D 𝒔̂ 𝛿(𝑁𝐶 (𝑡, 𝑠) − 𝒔(𝑡)𝑇 𝒔(𝑠))𝛿(𝑁𝑅(𝑡, 𝑠) − 𝒔(𝑡)𝑇 𝒔̂(𝑠))𝛿(𝑁𝐷 (𝑡, 𝑠) − 𝒔(𝑡)𝑇 𝒔(𝑠))

=

∫
D𝐶D𝑅D𝐷 𝑒𝑁

∫
𝑑𝑡 𝑑𝑠 [𝐷 (𝑡 ,𝑠)−(𝑧+𝜕𝑡 ) )𝑅 (𝑡 ,𝑠) ] 𝛿 (𝑡−𝑠)+ 𝑁

4
∫
𝑑𝑡 𝑑𝑠 (𝐶 (𝑡 ,𝑠)𝐷 (𝑡 ,𝑠)+𝑅 (𝑡 ,𝑠)𝑅 (𝑠,𝑡 ) )

×
∫

D𝒔D 𝒔̂D𝐶̃D 𝑅̃D𝐷̃ 𝑒

1
2
∫
𝑑𝑡 𝑑𝑠 Tr

[
𝐶̃ (𝑡, 𝑠) 𝑅̃(𝑡, 𝑠)
𝑅̃(𝑠, 𝑡) 𝐷̃ (𝑡, 𝑠)

] [
𝐶 (𝑡, 𝑠) 𝑅(𝑡, 𝑠)
𝑅(𝑠, 𝑡) 𝐷 (𝑡, 𝑠)

]

× 𝑒

− 1
2
∫
𝑑𝑡 𝑑𝑠

[
𝒔(𝑡)
𝒔̂(𝑡)

]𝑇 [
𝐶̃ (𝑡, 𝑠) 𝑅̃(𝑡, 𝑠)
𝑅̃(𝑠, 𝑡) 𝐷̃ (𝑡, 𝑠)

] [
𝒔(𝑠)
𝒔̂(𝑠)

]
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Integrating away the 𝒔 and 𝒔̂ gives

⟨𝑍⟩ =
∫

D𝐶D𝑅D𝐷 𝑒𝑁
∫
𝑑𝑡 𝑑𝑠 [𝐷 (𝑡 ,𝑠)−(𝑧+𝜕𝑡 ) )𝑅 (𝑡 ,𝑠) ] 𝛿 (𝑡−𝑠)+ 𝑁

4
∫
𝑑𝑡 𝑑𝑠 (𝐶 (𝑡 ,𝑠)𝐷 (𝑡 ,𝑠)+𝑅 (𝑡 ,𝑠)𝑅 (𝑠,𝑡 ) )

×
∫

D𝐶̃D 𝑅̃D𝐷̃ 𝑒

1
2
∫
𝑑𝑡 𝑑𝑠 Tr

[
𝐶̃ (𝑡, 𝑠) 𝑅̃(𝑡, 𝑠)
𝑅̃(𝑠, 𝑡) 𝐷̃ (𝑡, 𝑠)

] [
𝐶 (𝑡, 𝑠) 𝑅(𝑡, 𝑠)
𝑅(𝑠, 𝑡) 𝐷 (𝑡, 𝑠)

]
− 1

2 log det

[
𝐶̃ (𝑡, 𝑠) 𝑅̃(𝑡, 𝑠)
𝑅̃(𝑠, 𝑡) 𝐷̃ (𝑡, 𝑠)

]

Eliminating the tilde fields with a saddle point in the usual way gives

⟨𝑍⟩ ∝
∫

D𝐶D𝑅D𝐷 𝑒𝑁
∫
𝑑𝑡 𝑑𝑠 [𝐷 (𝑡 ,𝑠)−(𝑧+𝜕𝑡 ) )𝑅 (𝑡 ,𝑠) ] 𝛿 (𝑡−𝑠)+ 𝑁

4
∫
𝑑𝑡 𝑑𝑠 (𝐶 (𝑡 ,𝑠)𝐷 (𝑡 ,𝑠)+𝑅 (𝑡 ,𝑠)𝑅 (𝑠,𝑡 ) )

× 𝑒

+ 1
2 log det

[
𝐶 (𝑡, 𝑠) 𝑅(𝑡, 𝑠)
𝑅(𝑠, 𝑡) 𝐷 (𝑡, 𝑠)

]

where we don’t consider the divergent functional trace of the identity. Note that this is
the typical form of a dmft with the self-energies Σ(𝑡, 𝑠) = 𝑅(𝑡, 𝑠) and D(𝑡, 𝑠) = 𝐶 (𝑡, 𝑠).
Now we are ready to solve for the order parameters using a saddle point! For reasons
we will see, it is most convenient to consider the derivative with respect to the matrix

𝑄(𝑡, 𝑠) =
[
𝐶 (𝑡, 𝑠) 𝑅(𝑡, 𝑠)
𝑅(𝑠, 𝑡) 𝐷 (𝑡, 𝑠)

]
(19)

Taking such a derivative, we should treat 𝑅(𝑡, 𝑠) and 𝑅(𝑠, 𝑡) as independent variables.
To facilitate this, we quickly rewrite

𝑁

∫
𝑑𝑡 𝑑𝑠 [𝐷 (𝑡, 𝑠) − (𝑧 + 𝜕𝑡 ))𝑅(𝑡, 𝑠)]𝛿(𝑡 − 𝑠)

= 𝑁

∫
𝑑𝑡 𝑑𝑠 [𝐷 (𝑡, 𝑠) − 1

2
(𝑧 + 𝜕𝑡 ))𝑅(𝑡, 𝑠) −

1
2
(𝑧 + 𝜕𝑠))𝑅(𝑠, 𝑡)]𝛿(𝑡 − 𝑠)

= 𝑁

∫
𝑑𝑡 𝑑𝑠 𝐷 (𝑡, 𝑠)𝛿(𝑡 − 𝑠) − 𝑁

2

∫
𝑑𝑡 𝑑𝑠

[
[(𝑧 − 𝜕𝑡 )𝛿(𝑡 − 𝑠)]𝑅(𝑡, 𝑠) + 1

2
[(𝑧 + 𝜕𝑡 )𝛿(𝑡 − 𝑠)]𝑅(𝑠, 𝑡)]

]
where we have used∫

𝑑𝑥 𝛿′ (𝑥 − 𝑦) 𝑓 (𝑥) = − 𝑓 ′ (𝑦) (20)

Now we can take derivatives with respect to 𝑄, which give

0 =
𝛿S

𝛿𝑄(𝑡, 𝑠) =

[ 1
4𝐷 (𝑡, 𝑠) 1

2 (𝑧 + 𝜕𝑡 )𝛿(𝑡 − 𝑠) + 1
4𝑅(𝑠, 𝑡)

1
2 (𝑧 + 𝜕𝑡 )𝛿(𝑡 − 𝑠) + 1

4𝑅(𝑡, 𝑠) 𝛿(𝑡 − 𝑠) + 1
4𝐶 (𝑡, 𝑠)

]
+1

2
𝑄−1 (𝑡, 𝑠)

(21)

Rather than mess with the functional inverse matrix of 𝑄, we remove it by convolving
it to both sides, which gives

0 =

∫
𝑑𝑢

[ 1
4𝐷 (𝑡, 𝑢) 1

2 (𝑧 − 𝜕𝑡 )𝛿(𝑡 − 𝑢) + 1
4𝑅(𝑢, 𝑡)

1
2 (𝑧 + 𝜕𝑡 )𝛿(𝑡 − 𝑢) + 1

4𝑅(𝑡, 𝑢) 𝛿(𝑡 − 𝑢) + 1
4𝐶 (𝑡, 𝑢)

]
𝑄(𝑢, 𝑠) + 1

2
𝛿(𝑡, 𝑠)

(22)
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which gives the four equations left to right, top to bottom,

0 =
1
2
(𝑧 − 𝜕𝑡 )𝑅(𝑠, 𝑡) +

1
4

∫
𝑑𝑢(𝐷 (𝑡, 𝑢)𝐶 (𝑢, 𝑠) + 𝑅(𝑠, 𝑢)𝑅(𝑢, 𝑡)) + 1

2
𝛿(𝑡 − 𝑠)

0 =
1
2
(𝑧 − 𝜕𝑡 )𝐷 (𝑡, 𝑠) + 1

4

∫
𝑑𝑢 (𝐷 (𝑡, 𝑢)𝑅(𝑢, 𝑠) + 𝑅(𝑢, 𝑡)𝐷 (𝑢, 𝑠))

0 =
1
2
(𝑧 + 𝜕𝑡 )𝐶 (𝑡, 𝑠) + 𝑅(𝑠, 𝑡) + 1

4

∫
𝑑𝑢 (𝑅(𝑡, 𝑢)𝐶 (𝑢, 𝑠) + 𝐶 (𝑡, 𝑢)𝑅(𝑠, 𝑢))

0 =
1
2
(𝑧 + 𝜕𝑡 )𝑅(𝑡, 𝑠) + 𝐷 (𝑡, 𝑠) + 1

4

∫
𝑑𝑢 (𝑅(𝑡, 𝑢)𝑅(𝑢, 𝑠) + 𝐷 (𝑡, 𝑢)𝐷 (𝑢, 𝑠)) + 1

2
𝛿(𝑡 − 𝑠)

First, notice that the equation for 𝐷 is consistent with 𝐷 = 0 for all times. Focusing
then on the last two equations, we have

0 =
1
2
(𝑧 + 𝜕𝑡 )𝐶 (𝑡, 𝑠) + 𝑅(𝑠, 𝑡) + 1

4

∫
𝑑𝑢 (𝑅(𝑡, 𝑢)𝐶 (𝑢, 𝑠) + 𝐶 (𝑡, 𝑢)𝑅(𝑠, 𝑢))

0 =
1
2
(𝑧 + 𝜕𝑡 )𝑅(𝑡, 𝑠) +

1
4

∫
𝑑𝑢 𝑅(𝑡, 𝑢)𝑅(𝑢, 𝑠) + 1

2
𝛿(𝑡 − 𝑠)

We seek solutions to these equations in the stationary state, where the correlation and
response functions have the time translation invariant form 𝐶 (𝑡 + 𝜏, 𝑠) = 𝐶 (𝜏) and
𝑅(𝑡 + 𝜏, 𝑠) = 𝑅(𝜏). Making this substitution, we have

0 =
1
2
(𝑧 + 𝜕𝜏)𝐶 (𝜏) + 𝑅(−𝜏) + 1

4

∫
𝑑𝜎 (𝑅(𝜏 − 𝜎)𝐶 (𝜎) + 𝐶 (𝜏 − 𝜎)𝑅(−𝜎))

0 =
1
2
(𝑧 + 𝜕𝜏)𝑅(𝜏) +

1
4

∫
𝑑𝜎 𝑅(𝜏 − 𝜎)𝑅(𝜎) + 1

2
𝛿(𝜏)

Now we can see why using the response function to get the resolvent is easier than
using the correlation function: the response function is given by a single closed integral
equation! Because it is quadratic, we can solve it with a Fourier transform, which gives

0 =
1
2
(𝑧 + 𝑖𝜔) 𝑅̂(𝜔) + 1

4
𝑅̂(𝜔)2 + 1

2
which is solved to give

𝑅̂(𝜔) = (𝑧 + 𝑖𝜔) ±
√︁
(𝑧 + 𝑖𝜔)2 − 2 (23)

We therefore have

𝐺 (𝑧) = 𝑅̂(0) = 𝑧 ±
√︁
𝑧2 − 2 (24)

again the resolvent of the goe.
A quick note on the order parameter 𝐷: it is always zero in causal theories. This

can be seen from the path integral:

𝐷 (𝑡, 𝑠) =
〈∑︁

𝑖 𝑗

𝛿2

𝛿ℎ𝑖 (𝑡)𝛿ℎ 𝑗 (𝑠)
𝑍 [𝒉]

〉 ����
𝒉=0

(25)

The crucial point is that ⟨𝑍 [ℎ]⟩ = 1 for any choice of 𝒉, since there is exactly one
trajectory 𝒔 consistent with each realization of the noise. Therefore, any variation of 𝑍
itself is always zero, and likewise 𝐷 is zero.
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