
8 Regular and free probability
Free probability is a generalization of probability theory to objects that do not commute,
like matrices. It provides a number of useful tools that allow quick analysis of the
resolvents of sums and products of random matrices if you already know the resolvent
of the individual matrices.

Regular probability
Before we enter into discussion of free probability, we will review some features of
regular probability theory so that we know what to expect. First, recall that two random
variables are independent if, for any functions 𝑓 and 𝑔,

𝑓 (𝑋)𝑔(𝑌 ) = 𝑓 (𝑋) × 𝑔(𝑌 ) (1)

Alternatively, independence can be defined by saying that for any integers 𝑛 and 𝑚,

(𝑋𝑛 − 𝑋𝑛) (𝑌𝑚 − 𝑌𝑚) = 0 (2)

This property leads to classic factorization rules, e.g.,

𝑋2𝑌2 = (𝑋2 − 𝑋2) (𝑌2 − 𝑌2) + 𝑋2 × 𝑌2 + 𝑋2 × 𝑌2 − 𝑋2 × 𝑌2 (3)

= 𝑋2 × 𝑌2

If 𝑋 is a random variable with probability density function (pdf) 𝑝𝑋, then its moment
generating function is given by

𝑀𝑋 (𝑡) = 𝑒𝑡𝑋 =

∫
𝑑𝑥 𝑝𝑋 (𝑥)𝑒𝑡 𝑥 (4)

It is called the moment generating function because its Taylor coefficients are the
moments 𝑚𝑛 = 𝑋𝑛 of the distribution of 𝑋 , with

𝑀𝑋 (𝑡) =
∫

𝑑𝑥 𝑝𝑋 (𝑥)𝑒𝑡 𝑥 =

∫
𝑑𝑥 𝑝𝑋 (𝑥)

∞∑︁
𝑛=0

(𝑡𝑥)𝑛
𝑛!

=

∞∑︁
𝑛=0

𝑥𝑛𝑡𝑛

𝑛!
=

∞∑︁
𝑛=0

𝑚𝑛𝑡
𝑛

𝑛!
(5)

This means that the 𝑛th derivative of 𝑀𝑋 evaluated at zero is the 𝑛th moment of the
distribution of 𝑋 , with

𝑀
(𝑛)
𝑋

(0) = 𝑚𝑛 (6)

The moments of two independent random variables are not additive and, beyond the
first three, neither are the central moments. The cumulant generating function is defined
as the logarithm of the moment generating function, with

𝐾𝑋 (𝑡) = log𝑀𝑋 (𝑡) = log 𝑒𝑡𝑋 (7)
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The Taylor series of the cumulant generating function gives

𝐾𝑋 (𝑡) =
∞∑︁
𝑛=0

𝑡𝑛

𝑛!
𝐾

(𝑛)
𝑋

(0) =
∞∑︁
𝑛=0

𝜅𝑛𝑡
𝑛

𝑛!
(8)

where 𝜅𝑛 is the 𝑛th cumulant of 𝑋 . The first several cumulants are

𝜅1 = 𝑚1 𝜅2 = 𝑚2 − 𝑚2
1 = 𝜇2 𝜅3 = 𝑚3 − 3𝑚2𝑚1 + 2𝑚3

1 = 𝜇3 (9)

𝜅4 = 𝑚4 − 4𝑚3𝑚1 − 3𝑚2
2 + 12𝑚2

1𝑚2 − 6𝑚4
1 = 𝜇4 − 3𝜇2

2 𝜅5 = 𝜇5 − 10𝜇3𝜇2
(10)

where 𝜇𝑛 = (𝑋 − 𝑋)𝑛 is the 𝑛th central moment of 𝑋 . So, the first few cumulants
correspond to the central moments, e.g., the mean, variance, and skewness, but higher
cumulants do not.

You may recall the cumulant generating function from field theory, where it plays
an important role because the diagrams that contribute to its coefficients are only one-
line irreducible ones, whereas the diagrams that contribute to the coefficients of the
moment generating function are all of them. Besides its role in simplifying field theory
calculations, the cumulants and their generating function have the important property
that they are additive (cumulative) under addition of independent random variables.
This is because

𝐾𝑋+𝑌 (𝑡) = log𝑀𝑋+𝑌 (𝑡) = log 𝑒𝑡 (𝑋+𝑌 ) = log 𝑒𝑡𝑋𝑒𝑡𝑌 = log 𝑒𝑡𝑋 × 𝑒𝑡𝑌 (11)

= log(𝑒𝑡𝑋 × 𝑒𝑡𝑌 ) = log 𝑒𝑡𝑋 + log 𝑒𝑡𝑌 = log𝑀𝑋 (𝑡) + log𝑀𝑌 (𝑡)
= 𝐾𝑋 (𝑡) + 𝐾𝑌 (𝑡)

Since the Taylor coefficients of the sum of two functions are the sum of the coefficients
of the individual functions, we also have 𝜅𝑛 (𝑋 + 𝑌 ) = 𝜅𝑛 (𝑋) + 𝜅𝑛 (𝑌 ). The additivity
of cumulants is an important signature of independence of random variables. You can
consider the property of cumulants that

𝜅𝑛 = 𝜇𝑛 + (polynomial of lower-order central moments) (12)

and that they sum for sums of independent variables to uniquely define them.
If you have two random variables and know their pdfs, you can find the pdf of

their sum by taking the inverse Fourier transform of each to find 𝜑𝑋 and 𝜑𝑌 , take their
logarithm to find 𝐻𝑋 and 𝐻𝑌 , sum them to find 𝐻𝑋+𝑌 , exponentiate to find 𝜑𝑋+𝑌 , and
finally take the forward Fourier transform to find 𝑝𝑋+𝑌 .

Finally, note that when a random variable is multiplied by a constant, the cumulant
generating function has the scaling property that

𝐾𝑎𝑋 (𝑡) = log 𝑒𝑡𝑎𝑋 = 𝐾𝑋 (𝑎𝑡) (13)

It follows from their Taylor series definition that the cumulants are transformed by
𝜅𝑛 (𝑎𝑋) = 𝑎𝑛𝜅(𝑋).
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We can use the additive properties of cumulants to quickly prove the law of large
numbers and the central limit theorem. The law of large numbers states that the
sample mean resulting from summing 𝑁 independent and identically distributed random
variables approaches the mean of their distribution. The sample mean is defined by

𝜇𝑀 =
1
𝑀

𝑀∑︁
𝑖=1

𝑋𝑖 (14)

Because it is the sum of independent random variables, the cumulants of the distribution
of the sample mean are given by the sum of the cumulants of its parts, or

𝜅𝑛 (𝜇𝑀 ) =
𝑀∑︁
𝑖=1

𝜅𝑛 (𝑀−1𝑋𝑖) = 𝑀−𝑛
𝑀∑︁
𝑖=1

𝜅𝑛 (𝑋𝑖) = 𝑀−𝑛
𝑀∑︁
𝑖=1

𝜅𝑛 (𝑋) = 𝑀−𝑛+1𝜅𝑛 (𝑋) (15)

Therefore, for large 𝑀 , 𝜅1 (𝜇𝑀 ) = 𝜅1 (𝑋) and 𝜅𝑛 (𝜇𝑀 ) = 0 for all 𝑛 ≥ 2. Since the first
cumulant is the mean, this says that the mean of the sample mean is the same as the
mean, and since all other cumulants are zero, the distribution of sample means is a 𝛿
function on its mean value.

The central limit theorem says that the average of many centered iid random variables
is centered Gaussian. Specifically, it says that

𝑆𝑀 =
1

√
𝑀

𝑀∑︁
𝑖=1

𝑋𝑖 (16)

is Gaussian. The centered Gaussian distribution has nonzero second cumulant while
every other cumulant is zero. Assuming 𝑋 is centered, i.e., 𝜅1 = 0, then

𝜅𝑛 (𝑆𝑀 ) =
𝑀∑︁
𝑖=1

𝜅𝑛 (𝑀− 1
2 𝑋𝑖) = 𝑀− 𝑛

2 +1𝜅𝑛 (𝑋) (17)

Therefore, for large 𝑀 , 𝜅2 (𝑆𝑀 ) = 𝜅2 (𝑋) and 𝜅𝑛 (𝑆𝑀 ) = 0 for all other 𝑛. This implies
that 𝑆𝑀 is Gaussian with variance 𝜅2 (𝑋).

Free probability
Free probability was developed around the property of freeness, which generalizes
independence to noncommuntative variables, like matrices. First, define the regularized
trace of an 𝑁 × 𝑁 matrix 𝑋 as

𝜏(𝑋) =
∑︁
𝑁→∞

1
𝑁

Tr 𝑋 (18)

Because of the self-averaging of large random matrices, this normalized trace in the
large-𝑁 limit has all the properties of an expectation value of a random variable. In
particular, one can write the moments of the spectral density as

𝑚𝑛 = 𝜏(𝑋𝑛) = lim
𝑁→∞

1
𝑁

Tr 𝑋𝑛 = lim
𝑁→∞

1
𝑁

𝑁∑︁
𝑖=1

𝜆𝑛𝑖 = 𝜆𝑛 (19)
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One might be tempted to think of two matrices as being independent if, like for real-
valued random variables,

𝜏((𝑋𝑛 − 𝜏(𝑋𝑛)) (𝑌𝑚 − 𝜏(𝑌𝑚))) = 0 (20)

for all integers 𝑛 and 𝑚. However, this is not really sufficient to recover the properties
of independent random variables, since it has nothing to say about, e.g., 𝑋𝑌𝑋𝑌 , which
is not necessarily equal to 𝑋2𝑌2. Therefore, we say that 𝑋 and 𝑌 are free if for any set
of integers 𝑛1, 𝑛2, . . . and 𝑚1, 𝑚2, . . .,

𝜏((𝑋𝑛1 − 𝜏(𝑋𝑛1 )) (𝑌𝑚1 − 𝜏(𝑌𝑚1 )) (𝑋𝑛2 − 𝜏(𝑋𝑛2 )) (𝑌𝑚2 − 𝜏(𝑌𝑚2 )) · · · ) = 0 (21)

The factorization properties implied by this definition are more nontrivial than those
implied by standard independence. For instance, while

𝜏(𝑋𝑌 ) = 𝜏((𝑋−𝜏(𝑋)) (𝑌−𝜏(𝑌 ))+𝜏(𝑋𝜏(𝑌 ))+𝜏(𝜏(𝑋)𝑌 )−𝜏(𝑋)𝜏(𝑌 ) = 𝜏(𝑋)𝜏(𝑌 ) (22)

consider

𝜏(𝑋𝑌𝑋𝑌 ) = 𝜏(𝑋)2𝜏(𝑌2) + 𝜏(𝑋2)𝜏(𝑌 )2 − 𝜏(𝑋2)𝜏(𝑌2) ≠ 𝜏(𝑋2)𝜏(𝑌2) = 𝜏(𝑋2𝑌2)
(23)

This may seem like a very strong requirement, but importantly it is realized if 𝑋 is drawn
from a rotationally invariant ensemble and 𝑌 is any matrix. If 𝑋 is from a rotationally
invariant ensemble, then 𝑂𝑋𝑂𝑇 for random orthogonal 𝑂 is equivalent statistically to
𝑋 . Then the first expression is equivalent to

𝜏((𝑋𝑛1 −𝜏(𝑋𝑛1 ))𝑂𝑇 (𝑌𝑚1 −𝜏(𝑌𝑚1 ))𝑂 (𝑋𝑛2 −𝜏(𝑋𝑛2 ))𝑂𝑇 (𝑌𝑚2 −𝜏(𝑌𝑚2 ))𝑂 · · · ) (24)

which is the normalized trace of traceless matrices with a random orthogonal matrix
interspersed between them. One can show that in the large-𝑁 limit, such products are
always zero.

If we want to understand how to go from properties of free matrices to properties
of their sum, we want to establish something like the equivalent of the characteristic
function for random matrices. A good candidate is the so-called Harish–Chandra–
Itzykson–Zuber (HCIZ) integral. In its most general form, it is defined for two matrices
𝑋 and 𝑇 by

𝐼 (𝑋,𝑇) =
〈
𝑒

𝑁
2 Tr𝑇𝑂𝑋𝑂𝑇

〉
𝑂

(25)

where the average is over all orthogonal matrices 𝑂. This integral naturally factorizes
like the characteristic function for sums of free matrices. Consider again 𝑂′𝑋𝑂′𝑇 and
𝑌 for some random𝑂′. Since the spectrum of 𝑋 does not depend on𝑂′, averaging over
𝑂′ or not is irrelevant. Then

𝐼 (𝑂′𝑋𝑂′𝑇 + 𝑌,𝑇) =
〈
𝑒

𝑁
2 Tr𝑇𝑂 (𝑂′𝑋𝑂′𝑇+𝑌 )𝑂𝑇

〉
𝑂,𝑂′

(26)

=

〈
𝑒

𝑁
2 Tr𝑇𝑂′′𝑋𝑂′′𝑇+ 𝑁

2 Tr𝑇𝑂𝑌𝑂𝑇
〉
𝑂,𝑂′′

= 𝐼 (𝑋,𝑇)𝐼 (𝑌,𝑇)
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where we defined 𝑂′′ = 𝑂𝑂′, an independent orthogonal matrix from 𝑂, which
factorizes the average. This result is general in 𝑇 , but for our purposes we only need
𝑇 = 𝑡𝒗𝒗𝑇 a rank-one matrix with ∥𝒗∥2 = 1. When this is the case, we can write
𝒔 =

√
𝑁𝑡𝑂𝑇𝒗, and the integral is simply

𝐼𝑋 (𝑡) =
〈
𝑒

1
2 𝒔

𝑇𝑋𝒔
〉
∥𝒔∥2=𝑁𝑡

=

∫
𝑑𝒔 𝛿(𝑁𝑡 − ∥𝒔∥2)𝑒 1

2 𝒔
𝑇𝑋𝒔∫

𝑑𝒔 𝛿(𝑁𝑡 − ∥𝒔∥2)
(27)

The equivalent of the cumulent generating function would be

𝐻𝑋 (𝑡) =
2
𝑁

log 𝐼𝑋 (𝑡) (28)

Using the property of 𝐼 shown above, 𝐻𝑋+𝑌 = 𝐻𝑋 + 𝐻𝑌 for free matrices 𝑋 and 𝑌 .
For simple ensembles 𝐻𝑋 (𝑡) is simple enough to compute directly, but we would like
to make a more abstract calculation to connect it with the resolvent. First, exponentiate
the 𝛿 function:

𝐼𝑋 (𝑡) ∝
∫
𝑑𝒔 𝑑𝑧 𝑒

1
2 𝒔

𝑇𝑋𝒔+ 1
2 (𝑁𝑡𝑧−𝑧 ∥𝒔∥2 )

𝑒
𝑁
2 (1+log 𝑡 )

=

∫
𝑑𝒔 𝑑𝑧 𝑒−

1
2 𝒔

𝑇 (𝑧𝐼−𝑋)𝒔+ 1
2 𝑁𝑡𝑧

𝑒
𝑁
2 (1+log 𝑡 )

(29)

We have also evaluated the denominator to largest order in 𝑁 , which is just the value of
the 𝑁-sphere of radius

√
𝑁𝑡 we have seen now a few times. You can see the resolvant

trying to appear here. Next, we can perform the Gaussian integral in 𝒔, giving

𝐼𝑋 (𝑡) ∝
∫
𝑑𝑧 det(𝑧𝐼 − 𝑋)− 1

2 𝑒
1
2 𝑁𝑡𝑧

𝑒
𝑁
2 (1+log 𝑡 )

=

∫
𝑑𝑧 𝑒

𝑁
2 (𝑡 𝑧− 1

𝑁

∑
𝑖 log(𝑧−𝜆𝑖 ) )

𝑒
𝑁
2 (1+log 𝑡 )

(30)

where we have used the fact that the determinant is the product of the eigenvalues and
then brought them into the exponential with logarithms, and 𝜆𝑖 are the eigenvalues of
𝑋 . This is an integral in 𝑧 we can evaluate with saddle-point, which gives

0 =
𝜕𝑆

𝜕𝑧
= 𝑡 − 1

𝑁

∑︁
𝑖

1
𝑧 − 𝜆𝑖

= 𝑡 − 𝐺𝑋 (𝑧) (31)

where we have recognized the resolvant of 𝑋 . The saddle-point value of 𝑧 is therefore
given by 𝑧 = 𝐵𝑋 (𝑡), where 𝐵𝑋 is the blue function and the inverse of 𝐺𝑋, with
𝐺𝑋 (𝐵𝑋 (𝑡)) = 𝑡. Wrapping up, we have

𝐻𝑋 (𝑡) = 𝑡𝑧−
1
𝑁

∑︁
𝑖

log(𝑧−𝜆𝑖)−1−log 𝑡 = 𝑡𝐵𝑋 (𝑡)−
1
𝑁

∑︁
𝑖

log(𝐵𝑋 (𝑡)−𝜆𝑖)−1−log 𝑡 (32)

Finally, we differentiate with respect to 𝑡 to arrive at

𝑅𝑋 (𝑡) =
𝜕𝐻𝑋 (𝑡)
𝜕𝑡

= 𝐵𝑋 (𝑡) + 𝑡𝐵′
𝑋 (𝑡) −

1
𝑁

∑︁
𝑖

1
𝐵𝑋 (𝑡) − 𝜆𝑖

𝐵′
𝑋 (𝑡) −

1
𝑡

(33)

= 𝐵𝑋 (𝑡) + 𝑡𝐵′
𝑋 (𝑡) − 𝐺𝑋 (𝐵𝑋 (𝑡))𝐵′

𝑋 (𝑡) −
1
𝑡
= 𝐵𝑋 (𝑡) −

1
𝑡
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where we have defined the 𝑅-transform. Since 𝐻𝑋+𝑌 = 𝐻𝑋 + 𝐻𝑌 for free 𝑋 and 𝑌 ,
𝑅𝑋+𝑌 = 𝑅𝑋 + 𝑅𝑌 for free 𝑋 and 𝑌 as well. Note that since 𝐻𝑋 (0) = 0, we can write

𝐻𝑋 (𝑡) =
∫ 𝑡

0
𝑑𝑡′ 𝑅𝑋 (𝑡′) (34)

Let’s make this a little more concrete. Recall that if 𝑋 is goe, then the resolvent
was given by the equation

0 =
1
2
𝐺𝑋 (𝑧)2 − 𝑧𝐺𝑋 (𝑧) + 1 (35)

Since the blue function is the inverse of the resolvent, it is given by replacing every 𝑧
with 𝐵𝑋 (𝑡) and every 𝐺𝑋 (𝑧) with 𝑡, or

0 =
1
2
𝑡2 − 𝑡𝐵𝑋 (𝑡) + 1 (36)

This linear equation is solved to give

𝐵𝑋 (𝑡) =
1
2
𝑡 + 1

𝑡
(37)

and therefore the 𝑅-transform is

𝑅𝑋 (𝑡) = 𝐵𝑋 (𝑡) −
1
𝑡
=

1
2
𝑡 (38)

and its cumulent generating function is

𝐻𝑋 (𝑡) =
∫ 𝑡

0
𝑑𝑡′ 𝑅𝑋 (𝑡′) =

1
2

∫ 𝑡

0
𝑑𝑡′ 𝑡′ =

1
4
𝑡2 (39)

The 𝑅-transform is extremely useful because it is algebraically related to the resolvent.
If 𝑋 and 𝑌 are random matrices whose resolvents we know, we can find the resolvent
of 𝑋 + 𝑌 and therefore the spectral density by computing 𝑅𝑋 and 𝑅𝑌 , writing 𝑅𝑋+𝑌 as
their sum, and then solving back for the resolvent.

𝐻𝑋 (𝑡) generates so-called free cumulants, which like for regular random variables
generalize moments in a way that is cumulative. We see from the above goe example
that the free cumulants of the goe are 𝜅2 = 1

2 for the second moment (in general different
value depending on the variance of the matrix elements) and zero for all others. We see
that the semicircle distribution is characteristic of matrices with such free cumulents.
But, we can repeat the argument we made regarding the central limit theorem for real
random variables verbatim for matrices, and the result is the same: if we sum together
𝑀 free matrices with

𝑆𝑀 =
1

√
𝑀

𝑀∑︁
𝑖=1

𝑋𝑖 (40)

where the 𝑋𝑖 are identically distributed with any distribution with finite moments and
zero first moment, then 𝑆𝑀 will belong to an ensemble of matrices with 𝜅2 (𝑆𝑀 ) = 𝜅2 (𝑋)
and all other 𝜅𝑛 = 0. Here, we see the universality of the semicircle: it is the limiting
distribution for sums of free matrices with finite moments.
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