8 Regular and free probability

Free probability is a generalization of probability theory to objects that do not commute,
like matrices. It provides a number of useful tools that allow quick analysis of the
resolvents of sums and products of random matrices if you already know the resolvent
of the individual matrices.

Regular probability

Before we enter into discussion of free probability, we will review some features of
regular probability theory so that we know what to expect. First, recall that two random
variables are independent if, for any functions f and g,

F(X)g(Y) = f(X) xg(Y) 6]

Alternatively, independence can be defined by saying that for any integers n and m,

(X7 = X")(Ym —Ym) =0 2)

This property leads to classic factorization rules, e.g.,

X2¥2 = (X2-X2)(Y2-Y2) + X2x Y2+ X2x Y2 — X2 x Y2 3)
_XIxTE

If X is a random variable with probability density function (pPDF) px, then its moment
generating function is given by

My (t) = X = / dx py(x)e™ @)

It is called the moment generating function because its Taylor coefficients are the
moments m,, = X" of the distribution of X, with

(o)

Mx() = [ avpxers = [anpxto Y, B2 = 3 EL -y M )
n=0 ’ n=0 ’ n=0 '

This means that the nth derivative of My evaluated at zero is the nth moment of the
distribution of X, with

MY (0) = m, (6)

The moments of two independent random variables are not additive and, beyond the
first three, neither are the central moments. The cumulant generating function is defined
as the logarithm of the moment generating function, with

Kx(t) = log Mx(t) = log e'X )



The Taylor series of the cumulant generating function gives

)

Kx(t)= ) DKL) =) ®)

n=0 " n=0

where «,, is the nth cumulant of X. The first several cumulants are

2 3
K1 =my Ky = mpy—my = {2 k3 = m3 —3mamy +2m; = uz (9)

K4 = my — 4dmszmy — 3m§ + lZm%mz - 6m‘11 = 4 — 3;1% ks = s — 10us s
(10)

where u, = (X — X)" is the nth central moment of X. So, the first few cumulants
correspond to the central moments, e.g., the mean, variance, and skewness, but higher
cumulants do not.

You may recall the cumulant generating function from field theory, where it plays
an important role because the diagrams that contribute to its coefficients are only one-
line irreducible ones, whereas the diagrams that contribute to the coefficients of the
moment generating function are all of them. Besides its role in simplifying field theory
calculations, the cumulants and their generating function have the important property
that they are additive (cumulative) under addition of independent random variables.
This is because

Kx1y (1) = log M,y () = log e! X*Y) = log e'Xe!Y = log e!X x e!¥ (11)
= log(e’_X X e’_y) = loge’_x + loge’_y = log Mx(t) + log My (t)
= Kx(1) + Ky (1)

Since the Taylor coefficients of the sum of two functions are the sum of the coefficients
of the individual functions, we also have k, (X +Y) = «,(X) + k,(Y). The additivity
of cumulants is an important signature of independence of random variables. You can
consider the property of cumulants that

Kn = Mn + (polynomial of lower-order central moments) (12)

and that they sum for sums of independent variables to uniquely define them.

If you have two random variables and know their ppFs, you can find the ppF of
their sum by taking the inverse Fourier transform of each to find ¢x and ¢y, take their
logarithm to find Hx and Hy, sum them to find Hx.y, exponentiate to find ¢x.y, and
finally take the forward Fourier transform to find px.y.

Finally, note that when a random variable is multiplied by a constant, the cumulant
generating function has the scaling property that

Kax(t) = loge'™X = Kx(at) (13)

It follows from their Taylor series definition that the cumulants are transformed by
kn(aX) = ak(X).



We can use the additive properties of cumulants to quickly prove the law of large
numbers and the central limit theorem. The law of large numbers states that the
sample mean resulting from summing N independent and identically distributed random
variables approaches the mean of their distribution. The sample mean is defined by

1 M
tp = M;xi (14)

Because it is the sum of independent random variables, the cumulants of the distribution
of the sample mean are given by the sum of the cumulants of its parts, or

M M M
kn (i) = D ka(M7IX) = M7 Y ke (Xi) = M"Y ki (X) = M7 i (X)) (15)

i=1 i=1 i=1

Therefore, for large M, k1 (up) = «1(X) and «,,(ups) = 0 for all n > 2. Since the first
cumulant is the mean, this says that the mean of the sample mean is the same as the
mean, and since all other cumulants are zero, the distribution of sample means is a ¢
function on its mean value.

The central limit theorem says that the average of many centered ip random variables
is centered Gaussian. Specifically, it says that

1 M
Sy = — X; 16
M WZ (16)

is Gaussian. The centered Gaussian distribution has nonzero second cumulant while
every other cumulant is zero. Assuming X is centered, i.e., k; = 0, then

M
kn(Sn) = ) k(M73X;) = M7 3k (X) (17)

i=1

Therefore, for large M, k2 (Spr) = k2(X) and k,,(Sps) = O for all other n. This implies
that Sy, is Gaussian with variance «; (X).

Free probability

Free probability was developed around the property of freeness, which generalizes
independence to noncommuntative variables, like matrices. First, define the regularized
trace of an N X N matrix X as

7(X) = Z %TrX (18)
N—oo

Because of the self-averaging of large random matrices, this normalized trace in the
large-N limit has all the properties of an expectation value of a random variable. In
particular, one can write the moments of the spectral density as

N

1 1 _

mp = T(X") = lim = TeX" = I\}iinooNZ/lf =" (19)
i=1



One might be tempted to think of two matrices as being independent if, like for real-
valued random variables,

(X" =r(X") XY™ -7(¥Y™))) =0 (20)

for all integers n and m. However, this is not really sufficient to recover the properties
of independent random variables, since it has nothing to say about, e.g., XY XY, which
is not necessarily equal to X*Y2. Therefore, we say that X and Y are free if for any set
of integers ny,ny,...and my,mo, .. .,

(X" —7(X"M) Y™ =7 (Y"))(X™ - (X)) (Y™ —7(Y™)) ) =0 (21)

The factorization properties implied by this definition are more nontrivial than those
implied by standard independence. For instance, while

T(XY) =1(X=-1(X)(Y=1(Y)+t(X7(Y)+7 (= (X)Y)-1(X)7(Y) = 7(X)7(Y) (22)
consider

T(XYXY) = 1(X)*t(Y?) + 1(X?)7(Y)* - t(XH)T(Y?) # 1(XH)71(Y?) = 7(X°Y?)
(23)

This may seem like a very strong requirement, but importantly it is realized if X is drawn
from a rotationally invariant ensemble and Y is any matrix. If X is from a rotationally
invariant ensemble, then O XO” for random orthogonal O is equivalent statistically to
X. Then the first expression is equivalent to

(X" =7 (X")OT (Y™ —7(Y"))O (X" ~7(X"))OT (Y™ ~7(Y"))0 ) (24)

which is the normalized trace of traceless matrices with a random orthogonal matrix
interspersed between them. One can show that in the large-N limit, such products are
always zero.

If we want to understand how to go from properties of free matrices to properties
of their sum, we want to establish something like the equivalent of the characteristic
function for random matrices. A good candidate is the so-called Harish—Chandra—
Itzykson—Zuber (HCIZ) integral. In its most general form, it is defined for two matrices
X and T by

1(X,T) = (¢#TTOX0") (25)
o

where the average is over all orthogonal matrices O. This integral naturally factorizes

like the characteristic function for sums of free matrices. Consider again O’X0’T and

Y for some random O’. Since the spectrum of X does not depend on O’, averaging over

O’ or not is irrelevant. Then

1(0'X0'T +Y,T) = <e% TrTO(O’XO'T+Y)OT>O ) 26)
<e% Tt TO"X0"T+5 Tr TOY0T>

=I(X,THI(Y,T
oo = [XDIX.T)



where we defined O” = OO’, an independent orthogonal matrix from O, which
factorizes the average. This result is general in T, but for our purposes we only need
T = tvvT a rank-one matrix with ||v||> = 1. When this is the case, we can write
s = VNtOTv, and the integral is simply

ds (Nt — ||s])?)e2s" Xs
I(t) = <e%sTXs> _ [ dss( lIs1%) o7
lIs2=Nt [dss(Nt—|is]1?)

The equivalent of the cumulent generating function would be

2
Hx(1) = I log Ix (1) (28)

Using the property of I shown above, Hx.y = Hx + Hy for free matrices X and Y.
For simple ensembles Hx(¢) is simple enough to compute directly, but we would like
to make a more abstract calculation to connect it with the resolvent. First, exponentiate
the § function:

/' ds dze%sTXs+%(Ntz—z||s||2) /' ds dze—%sT(zI—X)s+%Ntz

Ix(t) o
x(1) e%(lﬂogz) e%(lﬂogt)

(29)

We have also evaluated the denominator to largest order in N, which is just the value of
the N-sphere of radius VNt we have seen now a few times. You can see the resolvant
trying to appear here. Next, we can perform the Gaussian integral in s, giving

fdz det(zl — X) 221z /dz e (tz=7y Lilog(z-4:)

Ix(t) o
x(1) e%(mogz) e%(mogt)

(30)

where we have used the fact that the determinant is the product of the eigenvalues and
then brought them into the exponential with logarithms, and A; are the eigenvalues of
X. This is an integral in z we can evaluate with saddle-point, which gives

_aS

1 1
O—a—z—t—ﬁgz_ﬂi—t—GX(Z) GDh

where we have recognized the resolvant of X. The saddle-point value of z is therefore
given by z = Bx(t), where By is the blue function and the inverse of Gy, with
Gx(Bx(t)) = t. Wrapping up, we have

1 1
Hx (1) = tz= Z log(z=d;)~1-logt = 1Bx(1) = Z log(Bx(1)-1;)—1-logt (32)
Finally, we differentiate with respect to ¢ to arrive at

RX([) = aH—)i(t) = Bx([) + tB;((t) - % Z ﬁB&(f) - % (33)

i

= B(1) + 1B(1) ~ Gx(Bx(D)B(0) ~ 1 = Bx(1) -+



where we have defined the R-transform. Since Hx,y = Hx + Hy for free X and Y,
Rx+y = Rx + Ry for free X and Y as well. Note that since Hx(0) = 0, we can write

HX(t)zf0 dt’ Rx(t)) (34)

Let’s make this a little more concrete. Recall that if X is Gog, then the resolvent
was given by the equation

0= 3Gx( - 2Gx(2) + 1 (35)

Since the blue function is the inverse of the resolvent, it is given by replacing every z
with Bx () and every Gx(z) with ¢, or

1

0= Eﬁ —tBx(1) + 1 (36)

This linear equation is solved to give
1 1

Bx(f) = El + ? (37)

and therefore the R-transform is
1 1
Rx(t) = Bx(1) - 7 =5 (38)

and its cumulent generating function is

! 1 ! 1
Hx(t) = / dt’ Rx(t') = 5/ dr't’ = th (39)
0 0

The R-transform is extremely useful because it is algebraically related to the resolvent.
If X and Y are random matrices whose resolvents we know, we can find the resolvent
of X +Y and therefore the spectral density by computing Rx and Ry, writing Rxy as
their sum, and then solving back for the resolvent.

Hx(t) generates so-called free cumulants, which like for regular random variables
generalize moments in a way that is cumulative. We see from the above Goe example
that the free cumulants of the GoE are k, = % for the second moment (in general different
value depending on the variance of the matrix elements) and zero for all others. We see
that the semicircle distribution is characteristic of matrices with such free cumulents.
But, we can repeat the argument we made regarding the central limit theorem for real
random variables verbatim for matrices, and the result is the same: if we sum together
M free matrices with

1 M
Sy = — X; 40
M WZ (40)

where the X; are identically distributed with any distribution with finite moments and
zero first moment, then S, will belong to an ensemble of matrices with k3 (Sys) = «2(X)
and all other «,, = 0. Here, we see the universality of the semicircle: it is the limiting
distribution for sums of free matrices with finite moments.
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