
9 Localization
Localization is a phenomenon where the eigenvectors of a random matrix concentrate
on certain favored directions, as opposed to how they are found in rotationally invariant
ensembles: equally likely to be anywhere. The ultimate localized matrix is a matrix
with random diagonal entries and zero everywhere else, or

𝐷 =


𝑥1 0 · · · 0
0 𝑥2 · · · 0
...

...
. . .

...

0 0 · · · 𝑥𝑁


(1)

for 𝑥𝑖 ∼ D for some probability distribution D. The eigenvalues of this matrix are pre-
cisely the 𝑥𝑖 , while the eigenvectors are simply the unit vectors 𝒆𝑖 = (0, . . . , 0, 1, 0, . . . , 0),
which are completely localized.

The standard method to measure localization is to use the inverse participation ratio
(ipr), defined for a vector 𝒗 by

I =

∑𝑁
𝑖=1 𝑣

4
𝑖(∑𝑁

𝑖=1 𝑣
2
𝑖

)2 =

∑𝑁
𝑖=1 𝑣

4
𝑖

∥𝒗∥2 =

𝑁∑︁
𝑖=1

𝑣4
𝑖 (2)

where in the last step we assume the eigenvector is normalized. This is called the
inverse participation ratio because it is a way of measuring the (inverse) of the number
of components of 𝒗 that take substantial nonzero values. For instance, if the values of
𝒗 are all equal, i.e., they all ‘participate’, then they will each have value 𝑣𝑖 =

1√
𝑁

and

I =

𝑁∑︁
𝑖=1

(
1
√
𝑁

)4
=

𝑁∑︁
𝑖=1

1
𝑁2 =

1
𝑁

(3)

Because the participation is large, the inverse participation is small. On the other hand,
if only one component of 𝒗 participates, with 𝑣1 = 1 and 𝑣𝑖 = 0 for 𝑖 > 1, then

I = 14 = 1 (4)

Because the participation is small, the inverse participation is large. We see here the
two extremes: the smallest I can be is 𝑁−1 while the largest it can be is 1. If I is
of order 1, then we say the vector is localized; if it is of order 𝑁−1, then we say the
vector is delocalized. If it instead behaves like 𝑁−𝛾 for some 0 < 𝛾 < 1, then we have
a partially delocalized or fractal eigenvector.

The inverse participation ratio can be extracted from the resolvent in the following
way. First, note that if a matrix is nondegenerate, it can always be written as a sum over
rank-one matrices associated with each of its eigenvectors, or

𝐻 =

𝑁∑︁
𝑗=1

𝑥 𝑗𝒗
( 𝑗 ) (𝒗 ( 𝑗 ) )𝑇 (5)
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where 𝒗 ( 𝑗 ) is the normalized eigenvector associated with eigenvalue 𝑥 𝑗 . The inverse
matrix shares the same eigenvectors and only inverts the eigenvalue, or

𝐻−1 =

𝑁∑︁
𝑗=1

𝒗 ( 𝑗 ) (𝒗 ( 𝑗 ) )𝑇
𝑥 𝑗

(6)

Taking now the matrix involved in the resolvent, we see that along the diagonal,

(𝑧 − 𝐻)−1
𝑖𝑖 =

𝑁∑︁
𝑗=1

(𝑣 ( 𝑗 )
𝑖

)2

𝑧 − 𝑥 𝑗

(7)

To get the inverse participation ratio, we should want the eigenvector components to
the fourth power, so we might write

| (𝑧 − 𝐻)−1
𝑖𝑖 |2 =

©­«
𝑁∑︁
𝑗=1

(𝑣 ( 𝑗 )
𝑖

)2

𝑧 − 𝑥 𝑗

ª®¬
∗ (

𝑁∑︁
𝑘=1

(𝑣 (𝑘 )
𝑖

)2

𝑧 − 𝑥𝑘

)
=

©­«
𝑁∑︁
𝑗=1

(𝑣 ( 𝑗 )
𝑖

)2

𝑧∗ − 𝑥 𝑗

ª®¬
(

𝑁∑︁
𝑘=1

(𝑣 (𝑘 )
𝑖

)2

𝑧 − 𝑥𝑘

)
(8)

=

𝑁∑︁
𝑗=1

(𝑣 ( 𝑗 )
𝑖

)4

(Re 𝑧 − 𝑥 𝑗 )2 + (Im 𝑧)2 +
𝑁∑︁
𝑗≠𝑘

(𝑣 ( 𝑗 )
𝑖

)2

𝑧∗ − 𝑥 𝑗

(𝑣 (𝑘 )
𝑖

)2

𝑧 − 𝑥𝑘

Take now 𝑧 = 𝑥 − 𝑖𝜖 . We have

| (𝑥 − 𝑖𝜖 − 𝐻)−1
𝑖𝑖 |2 =

𝑁∑︁
𝑗=1

(𝑣 ( 𝑗 )
𝑖

)4

(𝑥 − 𝑥 𝑗 )2 + 𝜖2 +
𝑁∑︁
𝑗≠𝑘

(𝑣 ( 𝑗 )
𝑖

)2

𝑥 − 𝑥 𝑗 + 𝑖𝜖

(𝑣 (𝑘 )
𝑖

)2

𝑥 − 𝑥𝑘 − 𝑖𝜖
(9)

We now take

lim
𝜖→0

𝜖 | (𝑥 − 𝑖𝜖 − 𝐻)−1
𝑖𝑖 |2 (10)

The first term contains

lim
𝜖→0

𝜖

(𝑥 − 𝑥 𝑗 )2 + 𝜖2 = 𝜋𝛿(𝑥 − 𝑥 𝑗 ) (11)

a common resolution of the Dirac 𝛿-function, which can be confirmed by integrating
the left-hand side over some interval containing 𝑥 𝑗 or not before take the limit. If the
matrix is nondegenerate, the second term is completely regular in the limit. It is regular
when 𝑥 ≠ 𝑥 𝑗 for any 𝑗 because nothing is divergent, but it is also regular when 𝑥 = 𝑥𝑙
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for some 𝑗 = 𝑙. Under that condition,

𝜖

𝑁∑︁
𝑗≠𝑘

(𝑣 ( 𝑗 )
𝑖

)2

𝑥 − 𝑥 𝑗 + 𝑖𝜖

(𝑣 (𝑘 )
𝑖

)2

𝑥 − 𝑥𝑘 − 𝑖𝜖
(12)

= 𝜖

𝑁∑︁
𝑗≠𝑘≠𝑙

(𝑣 ( 𝑗 )
𝑖

)2

𝑥 − 𝑥 𝑗 + 𝑖𝜖

(𝑣 (𝑘 )
𝑖

)2

𝑥 − 𝑥𝑘 − 𝑖𝜖

+ 𝜖
∑︁
𝑘≠𝑙

(𝑣 (𝑙)
𝑖
)2

𝑥 − 𝑥𝑙 + 𝑖𝜖

(𝑣 (𝑘 )
𝑖

)2

𝑥 − 𝑥𝑘 − 𝑖𝜖
+ 𝜖

∑︁
𝑗≠𝑙

(𝑣 ( 𝑗 )
𝑖

)2

𝑥 − 𝑥 𝑗 + 𝑖𝜖

(𝑣 (𝑙)
𝑖
)2

𝑥 − 𝑥𝑙 − 𝑖𝜖

= 𝜖

𝑁∑︁
𝑗≠𝑘≠𝑙

(𝑣 ( 𝑗 )
𝑖

)2

𝑥 − 𝑥 𝑗 + 𝑖𝜖

(𝑣 (𝑘 )
𝑖

)2

𝑥 − 𝑥𝑘 − 𝑖𝜖

− 1
𝑖

∑︁
𝑘≠𝑙

(𝑣 (𝑙)
𝑖
)2 (𝑣 (𝑘 )

𝑖
)2

𝑥 − 𝑥𝑘 − 𝑖𝜖
+ 1

𝑖

∑︁
𝑗≠𝑙

(𝑣 ( 𝑗 )
𝑖

)2

𝑥 − 𝑥 𝑗 + 𝑖𝜖
(𝑣 (𝑙)

𝑖
)2

= 𝜖

𝑁∑︁
𝑗≠𝑘≠𝑙

(𝑣 ( 𝑗 )
𝑖

)2

𝑥 − 𝑥 𝑗 + 𝑖𝜖

(𝑣 (𝑘 )
𝑖

)2

𝑥 − 𝑥𝑘 − 𝑖𝜖

where the two term that were potentially nonzero in the zero 𝜖 limit cancel each other.
We therefore have

lim
𝜖→0

𝜖 | (𝑥 − 𝑖𝜖 − 𝐻)−1
𝑖𝑖 |2 = 𝜋

𝑁∑︁
𝑗=1

(𝑣 ( 𝑗 )
𝑖

)4𝛿(𝑥 − 𝑥 𝑗 ) (13)

Summing now over 𝑖, we have

lim
𝜖→0

𝜖 |𝐺 (𝑥 − 𝑖𝜖) |2 = lim
𝜖→0

𝜖
1
𝑁

𝑁∑︁
𝑖=1

| (𝑥 − 𝑖𝜖 − 𝐻)−1
𝑖𝑖

|2

= 𝜋
1
𝑁

𝑁∑︁
𝑗=1

𝛿(𝑥 − 𝑥 𝑗 )
𝑁∑︁
𝑖=1

(𝑣 ( 𝑗 )
𝑖

)4 = 𝜋
1
𝑁

𝑁∑︁
𝑗=1

𝛿(𝑥 − 𝑥 𝑗 )I𝑗

= 𝜋𝜌(𝑥)I(𝑥)

and therefore the expected ipr for an eigenvector with eigenvalue 𝑥 is

I(𝑥) = 1
𝜋𝜌(𝑥) lim

𝜖→0
𝜖 |𝐺 (𝑥 − 𝑖𝜖) |2 (14)

We can check the results we already know: that the goe is delocalized and that a
diagonal matrix with random entries is localized. In the former case,

𝐺 (𝑧) = 𝑧 ±
√︁

2 − 𝑧2 (15)

and

|𝐺 (𝑥 − 𝑖𝜖) |2 = 2 ± 2𝑥
√︁

2 − 𝑥2 +𝑂 (𝜖) (16)
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Because this is finite at zero 𝜖 for all values of 𝑥, there is no localization. On the other
hand, for a random diagonal matrix,

lim
𝜖→0

𝜖 |𝐺 (𝑥 − 𝑖𝜖) |2 = lim
𝜖→0

∫
𝑑𝑥′

𝜖 𝑝(𝑥′)
(𝑥 − 𝑖𝜖 − 𝑥′) (𝑥 + 𝑖𝜖 − 𝑥′)

= lim
𝜖→0

∫
𝑑𝑥′

𝜖 𝑝(𝑥′)
(𝑥 − 𝑥′)2 + 𝜖2

= 𝜋

∫
𝑑𝑥′ 𝑝(𝑥′)𝛿(𝑥 − 𝑥′) = 𝜋𝑝(𝑥)

Since the spectral density 𝜌(𝑥) = 𝑝(𝑥), we have precisely that I(𝑥) = 1 for all 𝑥 where
𝑝(𝑥) ≠ 0.

Another signature of localization is in the statistics of neighboring eigenvalues.
We know that in delocalized systems like the goe, the probability distribution of the
gap between neighboring eigenvalues follows nearly the Wigner surmise, which for
real-valued symmetric matrices is

𝑝(𝑠) = 𝜋𝑠

2
𝑒−𝜋𝑠2/4 ∝ 𝑠 +𝑂 (𝑠2) (17)

The characteristic of the delocalized system is a pseudogap in the gap distribution.
However, localized matrices behave differently.

To compute the gap statistics of 𝐷, we first want to probability that two eigenvalues
sit a distance Δ𝑥 apart given that one is located at 𝑥 and that no other eigenvalues like
between 𝑥 and Δ𝑥. The probability that an eigenvalue is located at 𝑥 + Δ𝑥 given that
a particular one is located at 𝑥 without worrying about the other 𝑁 − 2 eigenvalues
is 𝑝(𝑥 + Δ𝑥, the probability that the second eigenvalue is where it should be. The
probability that one eigenvalue is not in that interval is

𝑝(𝑥′ < 𝑥 & 𝑥′ > 𝑥 + Δ𝑥) =
∫ 𝑥

−∞
𝑑𝑥′ 𝑝(𝑥′) +

∫ ∞

𝑥+Δ𝑥
𝑑𝑥′ 𝑝(𝑥′) (18)

Therefore, the conditional probability that there is an eigenvalue at 𝑥 + Δ𝑥 given that
there is one at 𝑥 and with none between them is

𝑝𝑁 (Δ𝑥 | 𝑥𝑖 = 𝑥) = 𝑝(𝑥 + Δ𝑥)
(∫ 𝑥

−∞
𝑑𝑥′ 𝑝(𝑥′) +

∫ ∞

𝑥+Δ𝑥
𝑑𝑥′𝑝(𝑥′)

)𝑁−2
(19)

The probability that this is true given that any eigenvalue has value 𝑥 is then

𝑝𝑁 (Δ𝑥 | 𝑥) =
𝑁∑︁
𝑖=1

𝑝𝑁 (Δ𝑥 | 𝑥𝑖 = 𝑥)𝑝(𝑥𝑖) = 𝑁𝑝𝑁 (Δ𝑥 | 𝑥𝑖 = 𝑥)𝑝(𝑥) (20)

Finally, the probability that such a gap exists anywhere is

𝑝𝑁 (Δ𝑥) =
∫ ∞

−∞
𝑑𝑥 𝑝𝑁 (Δ𝑥 | 𝑥) (21)

= 𝑁

∫ ∞

−∞
𝑑𝑥 𝑝(𝑥)𝑝(𝑥 + Δ𝑥)

(∫ 𝑥

−∞
𝑑𝑥′ 𝑝(𝑥′) +

∫ ∞

𝑥+Δ𝑥
𝑑𝑥′ 𝑝(𝑥′)

)𝑁−2
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We are analyzing this at large 𝑁 , where the probability of a gap becomes shrinks if
the gap is held constant. So, we rescale the gap with 𝑁 , and instead analyze 𝑠 with
Δ𝑥 = 𝑠/𝑁𝑝(𝑥). This gives

𝑝𝑁 (𝑠) =
∫ ∞

−∞
𝑑𝑥 𝑝(𝑥 + 𝑠

𝑁 𝑝 (𝑥 ) )
(∫ 𝑥

−∞
𝑑𝑥′ 𝑝(𝑥′) +

∫ ∞

𝑥+ 𝑠
𝑁 𝑝 (𝑥)

𝑑𝑥′ 𝑝(𝑥′)
)𝑁−2

(22)

Expanding in large 𝑁 , this gives

𝑝𝑁 (𝑠) =
∫ ∞

−∞
𝑑𝑥 (𝑝(𝑥) +𝑂 (𝑁−1))

(∫ 𝑥

−∞
𝑑𝑥′ 𝑝(𝑥′) +

∫ ∞

𝑥

𝑑𝑥′ 𝑝(𝑥′) − 𝑠

𝑁
+𝑂 (𝑁−2)

)𝑁−2

=

∫ ∞

−∞
𝑑𝑥 (𝑝(𝑥) +𝑂 (𝑁−1))

(∫ ∞

−∞
𝑑𝑥′ 𝑝(𝑥′) − 𝑠

𝑁
+𝑂 (𝑁−2)

)𝑁−2

=

∫ ∞

−∞
𝑑𝑥 (𝑝(𝑥) +𝑂 (𝑁−1))

(
1 − 𝑠

𝑁
+𝑂 (𝑁−2)

)𝑁−2

=

∫ ∞

−∞
𝑑𝑥 𝑝(𝑥)𝑒−𝑠 +𝑂 (𝑁−1) = 𝑒−𝑠 +𝑂 (𝑁−1)

The resulting asymptotic distribution is the Poisson distribution, and we say the eigen-
value gaps have Poisson statistics.

A simple model for localization is the Rosenzweig–Porter model, which consists of
adding a goe matrix 𝐻 to a random diagonal matrix 𝐷, or

𝑀 = 𝐷 + 𝑎𝐻 (23)

where 𝑎 is a constant that scales the relative weight of 𝐷 in the combination. We can
understand the resolvent of the sum by use of the 𝑅 transform. Since the 𝑅 transform
of a sum of free matrices is the sum of their 𝑅 transforms, and because goe matrices
are free of any other independent matrix, we therefore have

𝑅𝑀 (𝑡) = 𝑅𝐷 (𝑡) + 𝑅𝑎𝐻 (𝑡) = 𝑅𝐷 (𝑡) + 𝑅𝐻 (𝑎𝑡) (24)

where we have used the scaling property of 𝑅 transforms as well. This implies that the
Blue function of 𝑀 is

𝐵𝑀 (𝑡) = 𝑅𝑀 (𝑡) + 1
𝑡
= 𝑅𝐷 (𝑡) + 𝑅𝐻 (𝑎𝑡) + 1

𝑡
= 𝐵𝐷 (𝑡) + 𝑅𝐻 (𝑎𝑡) (25)

where we have absorbed the 1
𝑡

into the Blue function of 𝐷. Writing 𝑡 = 𝐺𝑀 (𝑧), we
have

𝐵𝑀 (𝐺𝑀 (𝑧))︸          ︷︷          ︸
𝑧

= 𝐵𝐷 (𝐺𝑀 (𝑧)) + 𝑅𝐻 (𝑎𝐺𝑀 (𝑧)) (26)

Finally, isolating 𝐵𝐷 (𝐺𝑀 (𝑧)) and applying 𝐺𝐷 to both sides gives

𝐺𝐷 (𝐵𝐷 (𝐺𝑀 (𝑧)))︸                 ︷︷                 ︸
𝐺𝑀 (𝑧)

= 𝐺𝐷 (𝑧 − 𝑅𝐻 (𝑎𝐺𝑀 (𝑧))) (27)
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This is therefore a self-consistency equation for 𝐺𝑀 , relying on 𝐺𝐷 and 𝑅𝐻 . Up to
here this has been entirely general: the formula is exact for any free matrices 𝐻 and 𝐷.
In our case, we take 𝐻 to be goe, so 𝑅𝐻 (𝑡) = 1

2 𝑡, and we have

𝐺𝑀 (𝑧) = 𝐺𝐷

(
𝑧 − 1

2
𝑎𝐺𝑀 (𝑧)

)
(28)

To have an analytic solution for this formula requires that 𝑝𝐷 be sufficiently simple that
the resolvent can be computed and that the resulting formula for 𝐺𝑀 is not transcen-
dental. Surprisingly, Gaussian 𝑝𝐷 is not such a simple case. It is much simpler in fact
to use Cauchy-distributed 𝑝𝐷 , with

𝑝𝐷 (𝑥) = 1
𝜋𝜔

𝜔2

(𝑥 − 𝜇)2 + 𝜔2 (29)

where 𝜔 is the width and 𝜇 is the mean. Then

𝐺𝐷 (𝑧) =
∫

𝑑𝑥 𝑝(𝑥) 1
𝑧 − 𝑥

=

∫
𝑑𝑥

1
𝜋𝜔

𝜔2

(𝑥 − 𝜇)2 + 𝜔2
1

𝑧 − 𝑥
(30)

This integral can be treated as a contour integral, with the only poles at 𝑥 = 𝑧 and
𝑥 = 𝜇 ± 𝑖𝜔. Take the contour running along the real line and then with an arc in the
upper half-plane. The residue due to the pole at 𝜇 + 𝑖𝜔 is 1

2𝜋𝑖
1

𝑧−𝜇−𝑖𝜔 . If Im 𝑧 < 0,
then this is the only in the contour, otherwise we also have the residue at 𝑥 = 𝑧 with
− 1

2𝜋𝑖
2𝑖𝜔

(𝑧−𝜇)2+𝜔2 . In the first case the resolvent is

𝐺𝐷 (𝑧) = 1
𝑧 − 𝜇 − 𝑖𝜔

(31)

while in the second it is

𝐺𝐷 (𝑧) = 1
𝑧 − 𝜇 − 𝑖𝜔

− 2𝑖𝜔
(𝑧 − 𝜇)2 + 𝜔2 =

1
𝑧 − 𝜇 + 𝑖𝜔

(32)

In either case this is a simple formula, and

𝐺𝑀 (𝑧) = 1
𝑧 − 1

2𝑎𝐺𝑀 (𝑧) − 𝜇 ± 𝑖𝜔
(33)

which is quadratic and solved by

𝐺𝑀 (𝑧) = 1
𝑎

(
𝑧 − 𝜇 ± 𝑖𝜔 ±

√︁
(𝑧 − 𝜇 ± 𝑖𝜔)2 − 2𝑎

)
(34)

As a sanity check, we see that when 𝑧 is scaled by
√
𝑎 and 𝑎 is very large, we have

√
𝑎𝐺𝑀 (

√
𝑎𝑧) = 𝑧− 1

√
𝑎
(𝜇∓𝑖𝜔)±

√︃
(𝑧 − 1√

𝑎
(𝜇 ∓ 𝑖𝜔))2 − 2 = 𝐺𝐻 (𝑧)+𝑂 (𝑎− 1

2 ) (35)
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and when 𝑎 is taken to zero (with the correct branch of the square root chosen so that
the term in parentheses goes to zero as 𝑎 → 0), we have

𝐺𝑀 (𝑧) = 𝐺𝐷 (𝑧) +𝑂 (𝑎) (36)

What about the localization properties of 𝑀? Well,

lim
𝜖→0

|𝐺 (𝑥 − 𝑖𝜖) |2 =
1
𝑎2

���𝑥 − 𝜇 − 𝑖𝜔 ±
√︁
(𝑥 − 𝜇 − 𝑖𝜔)2 − 2𝑎

���2 (37)

for any finite 𝑎, so there is not localization for any 𝑎. This is a bit disappointing for
those who want a model with a localization transition. However, there are some things
to note. First, we are working in a limit where 𝑁 has already been taken to infinity. If
𝑎 is allowed to scale with 𝑁 , different outcomes are possible: there is localization for
any scaling where 𝑎 ∝ 𝑁−𝛾 for 𝛾 > 0. However, the localization is not a trivial one,
since there is a range of positive 𝛾 where the ipr is nonzero but the spectrum is still
Wigner-like. Work on such models is a field of active research, since techniques for
sums of matrices that scale with different powers of 𝑁 are still being developed.

On the other hand, localization transitions do occur if one replaces the fully-
connected 𝐻 with a sparse 𝐻 whose nonzero entries correspond to the adjacency
matrix of a tree-like graph. We will see later in the course when we treat sparse random
matrices how to analyze such situations.
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