
10 Sparse matrices
Up to this point we have only analyzed random matrices whose entries are all (with high
probability) nonzero random numbers. However, matrices with many zero components
are often interesting. They usually arise because we consider some system whose
interactions are defined by a network or lattice, where the adjacency matrix of the
lattice 𝐶 defines its connectivity: 𝐶𝑖 𝑗 = 1 if 𝑖 and 𝑗 interact and 𝐶𝑖 𝑗 = 0 otherwise.
Then, a matrix of random interactions would have the form

𝐻𝑖 𝑗 = 𝐶𝑖 𝑗𝐽𝑖 𝑗 + 𝐻𝑖𝑖𝛿𝑖 𝑗 (1)

for 𝐽 a, e.g., goe matrix and allowing for autonomous diagonal entries, or ‘on-site’
interactions. In general such systems cannot be solved directly, but when the network
is tree-like (few loops whose size grows with 𝑁) there are techniques to write down
arbitrary-precision numeric solutions.

We start again from the block decomposition (or Schur complement formula) of the
resolvent matrix

𝐺𝑖 𝑗 (𝑧) = (𝑧𝐼 − 𝐻)−1
𝑖 𝑗 (2)

where as always the final resolvent is given by

𝐺 (𝑧) = 1
𝑁

𝑁∑︁
𝑖=1

𝐺𝑖𝑖 (𝑧) (3)

The decomposition where the 𝑖th row and column is isolated from the rest of the matrix
is given in general by

𝐺𝑖𝑖 (𝑧)−1 = 𝐺−1
𝑖𝑖 (𝑧) −

∑︁
𝑗 ,𝑘≠𝑖

𝐺−1
𝑖 𝑗 (𝑧)𝐺

(𝑖)
𝑗𝑘
(𝑧)𝐺−1

𝑘𝑖 (𝑧) (4)

= 𝑧 − 𝐻𝑖𝑖 −
∑︁
𝑗 ,𝑘≠𝑖

𝐻𝑖 𝑗𝐺
(𝑖)
𝑗𝑘
𝐻𝑘𝑖

where 𝐺 (𝑖) is the resolvent for the matrix 𝐻 with the 𝑖th row and column removed.
When studying fully connected systems, we quickly argued

1. 𝐺𝑖𝑖 (𝑧)−1 = (𝐺𝑖𝑖 (𝑧))−1 using the self-averaging of the resolvent, and

2. 𝐺𝑖𝑖 (𝑧) = 1
𝑁

∑
𝑗≠𝑖 𝐺

(𝑖)
𝑗 𝑗

= 𝐺 (𝑧), arguing that the resolvent of only the 𝑖th site and
the resolvent of the matrix without row 𝑖 are both on average equal to the resolvent
of the whole matrix.

Both of these arguments fail in the sparse case. Before, each row ‘interacted’ with 𝑁−1
others, and we could rely on these properties that arise from the law of large numbers.
However, now each row ‘interacts’ with only a few others, and such conveniences no
longer apply.
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We can see the effect of this by letting the network nature of the matrix entries be
explicit in our formula. We use the notation

𝜕𝑖 = { 𝑗 | 𝐶𝑖 𝑗 = 1} (5)

to describe the set of neighboring sites to 𝑖. Then we can write

𝐺𝑖𝑖 (𝑧)−1 = 𝑧 − 𝐻𝑖𝑖 −
∑︁
𝑗 ,𝑘≠𝑖

𝐶𝑖 𝑗𝐶𝑘𝑖𝐽𝑖 𝑗𝐺
(𝑖)
𝑗𝑘
(𝑧)𝐽𝑘𝑖 (6)

= 𝑧 − 𝐻𝑖𝑖 −
∑︁
𝑗 ,𝑘∈𝜕𝑖

𝐽𝑖 𝑗𝐺
(𝑖)
𝑗𝑘
(𝑧)𝐽𝑘𝑖

Now we make the crucial assumption unique to the cavity method on sparse networks:
that with the site 𝑖 removed, all properties attached to sites 𝑗 , 𝑘 ∈ 𝜕𝑖 are independent
from each other. This is an exact assumptions on a tree, since removing the site 𝑖

literally disconnects its neighbors in the network, and the matrix of interactions 𝐶 (𝑖)

can be blockwise decomposed into blocks associated with each former neighbor. In
particular, this means that eigenvectors of 𝐻 (𝑖) and therefore 𝐺 (𝑖) only have support on
one or the other site: if 𝑣 (𝑖)

𝑙 𝑗
≠ 0 for the 𝑗 ∈ 𝜕𝑖 component of some eigenvector 𝒗 (𝑖)

𝑙
of

𝐻 (𝑖) , then 𝑣
(𝑖)
𝑙𝑘

= 0 for the other neighbors 𝑘 ∈ 𝜕𝑖. We therefore have for 𝑗 , 𝑘 ∈ 𝜕𝑖 that

𝐺
(𝑖)
𝑗𝑘
(𝑧) = (𝑧𝐼 − 𝐻 (𝑖) )−1

𝑗𝑘 =

𝑁∑︁
𝑙=1

𝑣
(𝑖)
𝑙 𝑗

𝑣
(𝑖)
𝑙𝑘

𝑧 − 𝑥
(𝑖)
𝑙

=

𝑁∑︁
𝑙=1

(𝑣 (𝑖)
𝑙 𝑗
)2𝛿 𝑗𝑘

𝑧 − 𝑥
(𝑖)
𝑙

= 𝛿 𝑗𝑘𝐺
(𝑖)
𝑗 𝑗
(𝑧) (7)

that is, the resolvent matrix for the lattice with 𝑖 removed is diagonal among the neighbors
of site 𝑖. We then have

𝐺𝑖𝑖 (𝑧)−1 = 𝑧 − 𝐻𝑖𝑖 −
∑︁
𝑗∈𝜕𝑖

𝐽2
𝑖 𝑗𝐺

(𝑖)
𝑗 𝑗
(𝑧) (8)

The objects 𝐺
(𝑖)
𝑗 𝑗

are called the cavity Green functions since they are the diagonal
resolvent entries (Green functions) for the network with a cavity or hole in it due to the
absence of 𝑖. The diagonal entries 𝐺𝑖𝑖 (𝑧) are sometimes called the single-site marginal
Green functions.

The payoff of this construction is that we can write a self-consistent set of equations
for the cavity functions. We do this by repeating the above argument point for point,
but now for the matrix 𝐺 (𝑖) : this time, use the block inversion formula isolating the 𝑗 th
row of 𝐺 (𝑖) for 𝑗 ∈ 𝜕𝑖. Then

𝐺
(𝑖)
𝑗 𝑗
(𝑧)−1 = 𝑧 − 𝐻 𝑗 𝑗 −

∑︁
𝑘∈𝜕 𝑗\𝑖

𝐽2
𝑗𝑘𝐺

(𝑖, 𝑗 )
𝑘𝑘

(9)

where the notation 𝜕 𝑗\𝑖 means that we consider the set 𝜕 𝑗 with 𝑖 removed (since the
matrix we are considering has 𝑖 removed), and 𝐺 (𝑖, 𝑗 ) is the resolvent for the matrix with
rows and columns 𝑖 and 𝑗 removed. Now, the crucial insight is that given the tree-like
assumption, the cavity Green function attached to site 𝑘 doesn’t know that the site 𝑖 was
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removed from the network, since the site 𝑖 is only connected to 𝑘 via 𝑗 , which is also
removed. Therefore, we can write 𝐺

(𝑖, 𝑗 )
𝑘𝑘

= 𝐺
( 𝑗 )
𝑘𝑘

, and finally

𝐺
(𝑖)
𝑗 𝑗
(𝑧)−1 = 𝑧 − 𝐻 𝑗 𝑗 −

∑︁
𝑘∈𝜕 𝑗\𝑖

𝐽2
𝑗𝑘𝐺

( 𝑗 )
𝑘𝑘

(10)

which is a closed set of equations for the cavity Green functions.
The set of equations for the single-site marginal and cavity Green functions is not

so easy to solve in general, notably because they form a system of coupled equations
for 𝑁 different values of the marginal functions and 2𝐸 for number of network edges
𝐸 different values of the cavity functions. For a specific network with a specific set of
couplings and diagonal elements, the equations can be solved by iteration for a given
value of 𝑧:

1. Start with a random guess for 𝐺 (𝑖)
𝑗 𝑗 ,0 (𝑧) for every bond (𝑖, 𝑗).

2. Use the equation above to generate new guesses 𝐺
(𝑖)
𝑗 𝑗 ,𝑛+1 (𝑧) from the previous

guess by

𝐺
(𝑖)
𝑗 𝑗 ,𝑛+1 (𝑧)

−1 = 𝑧 − 𝐻 𝑗 𝑗 −
∑︁

𝑘∈𝜕 𝑗\𝑖
𝐽2
𝑗𝑘𝐺

( 𝑗 )
𝑘𝑘,𝑛

(𝑧) (11)

3. Repeat the process of new guesses until the cavity Green functions have con-
verged.

4. Calculate the single-site marginals from (8).

This algorithm appears generally in inference and statistics problems on networks and
is called message passing. In practice, one in interested in the spectral density, and so
chooses 𝑧 = 𝑥 − 𝑖𝜖 for some small but nonzero 𝜖 and a solves the problem on a grid of
𝑥. Since for nearby 𝑥 the problem should have nearby solutions, one can initialize the
algorithm with the output of a previous step.

It might seem silly to approach the spectral density this way, since for a matrix
with specific interactions one can just exactly diagonalize it. However, this algorithm
is much faster for large matrices, since typically eigenvalue solving takes 𝑁3 runtime.
Each iteration of this algorithm takes order 𝐸 ≤ 2𝑝𝑁 for networks with maximum
vertex degree 𝑝, and convergence is typically only in order-one steps. Therefore, one
often has linear-time convergence for message passing, compared to cubic for exact
diagonalization.

The equations can be solved exactly when the network is homogenous and deter-
ministic. Suppose that in our network every vertex has degree 𝑝, 𝐽𝑖 𝑗 = 1√

2
𝐽 for all

𝑖, 𝑗 , and 𝐻 𝑗 𝑗 = 0. Such a network is called an random regular graph. Assuming they
all take the same value 𝐺

(𝑖)
𝑗 𝑗
(𝑧) = 𝐺𝑐 (𝑧), the equation for the cavity Green functions

becomes

𝐺𝑐 (𝑧)−1 = 𝑧 − 1
2
(𝑝 − 1)𝐽2𝐺𝑐 (𝑧) (12)
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where we have used the fact that site 𝑗 has 𝑝 − 1 neighbors excluding 𝑖. This can be
solved exactly to yield

𝐺𝑐 (𝑧) =
1

(𝑝 − 1)𝐽2

(
𝑧 ±

√︁
𝑧2 − 2(𝑝 − 1)𝐽2

)
(13)

Then the equation for the single-site marginal Green functions, assuming they are all
identical again, yields

𝐺 (𝑧)−1 = 𝑧 − 1
2
𝑝𝐽2𝐺𝑐 (𝑧) (14)

= 𝑧 − 𝑝

2(𝑝 − 1)

(
𝑧 ±

√︁
𝑧2 − 2(𝑝 − 1)𝐽2

)
where now we use the fact that site 𝑖 has 𝑝 neighbors. The spectral density implied
by this resolvent can be compared with that resulting from generating random regular
graphs of degree 𝑝, and they match well for large graphs, even though random regular
graphs are not trees!1 Random regular graphs have an important property that the
expected size of loops grows with 𝑁 sufficiently large that the tree-like assumption of
independence of the cavity Green functions on different neighbors holds.

An interesting limit is that of high-connectivity, where 𝑝 approaches infinity with 𝐽

scaled to keep things finite. The good scaling for 𝐽 is 𝐽 = 𝑝−
1
2 , which gives as 𝑝 → ∞

𝐺 (𝑧)−1 =
1
2

(
𝑧 ∓

√︁
𝑧2 − 2

)
(15)

which gives the semicircle distribution! In fact this distribution can be recovered from
the cavity equations even for random 𝐽 in this limit, and it should make sense: with high
connectivity, the law-of-large-numbers assumptions that went into the fully connected
cavity calculation become correct again.

However, in this course and in life we are often interested in the spectral density
averaged over the random ensemble. How can we use these equations to arrive at this?
When 𝐽 and the diagonal of 𝐻 and even the connectivity of the network 𝐶 are random,
we must understand the cavity equations as distributional equations, in the specific
sense that they tell us the probability distribution of 𝐺 (𝑖)

𝑗 𝑗
must obey

𝑝(𝐺 (𝑖)
𝑗 𝑗
, 𝑑) =

∑︁
𝐶

𝑃(𝐶)
∫ ∏

𝑘∈𝜕𝐶 𝑗\𝑖

(
𝑑𝑝(𝐽 𝑗𝑘) 𝑑𝑝(𝐺 ( 𝑗 )

𝑘𝑘
, |𝜕𝐶 𝑘 |)

) ∫
𝑑𝑝(𝐻 𝑗 𝑗 ) (16)

×𝛿 ©­«(𝐺 (𝑖)
𝑗 𝑗
)−1 − 𝑧 + 𝐻 𝑗 𝑗 +

∑︁
𝑘∈𝜕𝐶 𝑗\𝑖

𝐽2
𝑗𝑘𝐺

( 𝑗 )
𝑘𝑘

ª®¬
where 𝑑𝑝(𝑥) = 𝑑𝑥 𝑝(𝑥) is a compact way of writing the measure over the probability
distribution 𝑝 for 𝑥. This is a functional equation for the joint probability that the cavity

1In fact this works better for random regular graphs than finite trees, because finite trees have a boundary
of degree-one leaves whose volume dwarfs that of the rest of the tree.
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function and its degree have specific values, and if we had that probability we could
calculate the probability of the single-site marginals by solving

𝑝(𝐺𝑖𝑖 , 𝑑) =
∑︁
𝐶

𝑃(𝐶)
∫ ∏

𝑘∈𝜕𝐶 𝑖

(
𝑑𝑝(𝐽𝑖 𝑗 ) 𝑑𝑝(𝐺 (𝑖)

𝑗 𝑗
, |𝜕𝐶 𝑗 |)

) ∫
𝑑𝑝(𝐻𝑖𝑖) (17)

×𝛿 ©­«(𝐺𝑖𝑖)−1 − 𝑧 + 𝐻𝑖𝑖 +
∑︁
𝑗∈𝜕𝐶 𝑖

𝐽2
𝑖 𝑗𝐺

(𝑖)
𝑗 𝑗

ª®¬
These really look like hopeless equations, but there is a simple and fast algorithm
for solving them numerically called population annealing, which is also quite general
for self-consistent probability problems like this. The algorithm works by creating a
population of 𝑀 candidate samples from the distribution, and then repeatedly replace
them with new samples generated by the consistency relation. If the distribution of
samples (not the individual samples!) converges, then the result is distributed with the
desired probability distribution. The operation is:

1. Generate a population of 𝑀 cavity Green functions 𝐺𝑖 at random.

2. Draw a new degree 𝑑 from the distribution of degrees in the network, and ℎ from
the distribution of diagonal elements.

3. Draw 𝑑 samples from the population, with 𝜎 ⊂ {1, . . . , 𝑀}, |𝜎 | = 𝑑, and for
each of them generate 𝐽𝑖 from the distribution of off-diagonal weights.

4. Generate a new cavity Green function 𝐺 with

𝐺−1 = 𝑧 − ℎ −
∑︁
𝑖∈𝜎

𝐽2
𝑖 𝐺𝑖 (18)

5. Replace one of the existing elements of the population with the new one at random

6. Repeat 2–5 until the distribution of 𝐺 has converged.

Then, the distribution of single-site marginals can be computed by repeatedly sampling
the converged population in a similar way, i.e., drawing 𝑑 from the degree distribution
and calculating the marginal picking 𝑑 neighbors at random from the population.
Finally, the expected value of the resolvent is given by taking the mean of the sample
of single-site marginal Green functions.

This algorithm effectively works at infinite size, and its accuracy scales with the
size of the population 𝑀 . The main source of systematic error in population annealing
is that features of the probability distribution can only be resolved if they correspond to
a pdf greater than 𝑀−1, so tail behavior can be difficult to resolve. Unfortunately, tail
behavior is an important part of phenomena like localization, so work on resolving it
is of concern. However, there are sophisticated extensions of population annealing that
better resolve small-probability (or large-deviation) parts of the distribution of cavity
fields, and so are suitable for treating such problems.
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